Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Neural Regen Res ; 20(4): 1164-1177, 2025 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38989954

RESUMEN

JOURNAL/nrgr/04.03/01300535-202504000-00031/figure1/v/2024-07-06T104127Z/r/image-tiff Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia. Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia. Currently, studies have reported increased oscillation power in cases of levodopa-induced dyskinesia. However, little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia. Furthermore, the role of the dopamine D3 receptor, which is implicated in levodopa-induced dyskinesia, in movement disorder-related changes in neural oscillations is unclear. We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson's disease. Furthermore, levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components, as well as bidirectional primary motor cortex (M1) ↔ dorsolateral striatum gamma flow. Administration of PD128907 (a selective dopamine D3 receptor agonist) induced dyskinesia and excessive gamma oscillations with a bidirectional M1 ↔ dorsolateral striatum flow. However, administration of PG01037 (a selective dopamine D3 receptor antagonist) attenuated dyskinesia, suppressed gamma oscillations and cortical gamma aperiodic components, and decreased gamma causality in the M1 → dorsolateral striatum direction. These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity, and that it has potential as a therapeutic target for levodopa-induced dyskinesia.

2.
bioRxiv ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39314418

RESUMEN

Castleman disease (CD) is inflammatory lymphoproliferative disorder of unclear etiology. To determine the cellular and molecular basis of CD, we analyzed the spatial proteome of 4,485,009 single cells, transcriptome of 50,117 single nuclei, immune repertoire of 8187 single nuclei, and pathogenic mutations in Unicentric CD, idiopathic Multicentric CD, HHV8-associated MCD, and reactive lymph nodes. CD was characterized by increased non-lymphoid and stromal cells that formed unique microenvironments where they interacted with lymphoid cells. Interaction of activated follicular dendritic cell (FDC) cytoplasmic meshworks with mantle zone B cells was associated with B cell activation and differentiation. VEGF, IL-6, MAPK, and extracellular matrix pathways were elevated in stromal cells of CD. CXCL13+ FDCs, PDGFRA+ T-zone reticular cells (TRC), and ACTA2-positive perivascular reticular cells (PRC) were identified as the predominant source of increased VEGF expression and IL-6 signaling in CD. VEGF expression by FDCs was associated with peri-follicular neovascularization. FDC, TRC and PRC of CD activated JAK-STAT, TGFß, and MAPK pathways via ligand-receptor interactions involving collagen, integrins, complement components, and VEGF receptors. T, B and plasma cells were polyclonal but showed class-switched and somatically hypermutated IgG1+ plasma cells consistent with stromal cell-driven germinal center activation. In conclusion, our findings show that stromal cell activation and associated B-cell activation and differentiation, neovascularization and stromal remodeling underlie CD and suggest new targets for treatment.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39175871

RESUMEN

Purpose: The specialty of Laboratory Genetics and Genomics (LGG) was created in 2017 in an effort to reflect the increasing convergence in technologies and approaches between clinical molecular genetics and clinical cytogenetics. However, there has not yet been any formal evaluation of the merging of these disciplines and the challenges faced by Program Directors (PDs) tasked with ensuring the successful training of laboratory geneticists under the new model. Methods: An electronic multi-question Qualtrics survey was created and was sent to the PD for each of the Accreditation Council for Graduate Medical Education-accredited LGG fellowship programs at the time. The data were collected, and the responses were aggregated for each question. Results: All of the responding PDs had started training at least 1 LGG fellow. PDs noted challenges with funding, staff shortages, molecular/cytogenetics content integration, limited total training time, increased remote work, increased sendout testing, and a lack of prior cytogenetics knowledge among incoming fellows. Conclusion: This survey attempted to assess the challenges that LGG PDs have been facing in offering and integrating clinical molecular genetics and clinical cytogenetics fellowship training. Common challenges between programs were noted, and a set of 6 concluding comments are provided to facilitate future discussion.

4.
Clin Immunol ; 265: 110298, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38909972

RESUMEN

Prostaglandins (PGs) play a crucial and multifaceted role in various physiological processes such as intercellular signaling, inflammation regulation, neurotransmission, vasodilation, vasoconstriction, and reproductive functions. The diversity and biological significance of these effects are contingent upon the specific types or subtypes of PGs, with each PG playing a crucial role in distinct physiological and pathological processes. Particularly within the immune system, PGs are essential in modulating the function of immune cells and the magnitude and orientation of immune responses. Hence, a comprehensive comprehension of the functions PG signaling pathways in immunosuppressive regulation holds substantial clinical relevance for disease prevention and treatment strategies. The manuscript provides a review of recent developments in PG signaling in immunosuppressive regulation. Furthermore, the potential clinical applications of PGs in immunosuppression are also discussed. While research into the immunosuppressive effects of PGs required further exploration, targeted therapies against their immunosuppressive pathways might open new avenues for disease prevention and treatment.


Asunto(s)
Terapia de Inmunosupresión , Prostaglandinas , Transducción de Señal , Humanos , Prostaglandinas/inmunología , Prostaglandinas/metabolismo , Animales , Transducción de Señal/inmunología , Tolerancia Inmunológica
6.
J Natl Cancer Inst ; 116(8): 1356-1365, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38702830

RESUMEN

BACKGROUND: TP53 alterations are common in certain pediatric cancers, making identification of putative germline variants through tumor genomic profiling crucial for disease management. METHODS: We analyzed TP53 alterations in 3123 tumors from 2788 pediatric patients sequenced using tumor-only or tumor-normal paired panels. Germline confirmatory testing was performed when indicated. Somatic and germline variants were classified based on published guidelines. RESULTS: In 248 tumors from 222 patients, 284 tier 1/2 TP53 sequence and small copy number variants were detected. Following germline classification, 86.6% of 142 unique variants were pathogenic or likely pathogenic. Confirmatory testing on 118 patients revealed germline TP53 variants in 28 of them (23 pathogenic or likely pathogenic and 5 of uncertain significance), suggesting a minimum Li-Fraumeni syndrome incidence of 0.8% (23/2788) in this cohort, 10.4% (23/222) in patients with TP53 variant-carrying tumors, and 19.5% (23/118) with available normal samples. About 25% (7/28) of patients with germline TP53 variants did not meet Li-Fraumeni syndrome diagnostic or testing criteria, while 20.9% (28/134) with confirmed or inferred somatic origins did. TP53 biallelic inactivation occurred in 75% of germline carrier tumors and was also prevalent in other groups, causing an elevated tumor-observed variant allelic fraction. Somatic evidence, however, including low variant allele fraction correctly identified only 27.8% (25/90) of patients with confirmed somatic TP53 variants. CONCLUSION: The high incidence and variable phenotype of Li-Fraumeni syndrome in this cohort highlights the importance of assessing germline status of TP53 variants identified in all pediatric tumors. Without clear somatic evidence, distinguishing somatic from germline origins is challenging. Classifying germline and somatic variants should follow appropriate guidelines.


Asunto(s)
Mutación de Línea Germinal , Síndrome de Li-Fraumeni , Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Niño , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/epidemiología , Neoplasias/genética , Neoplasias/epidemiología , Masculino , Femenino , Preescolar , Adolescente , Predisposición Genética a la Enfermedad , Variaciones en el Número de Copia de ADN , Pruebas Genéticas/métodos , Prevalencia , Lactante
7.
Int Immunopharmacol ; 133: 112047, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38631221

RESUMEN

BACKGROUND: Glioma is a primary tumor originating from the central nervous system, and despite ongoing efforts to improve treatment, its overall survival rate remains low. There are a limited number of reports regarding the clinical grading, prognostic impact, and utility of chemokines. Therefore, conducting a meta-analysis is necessary to obtain convincing and conclusive results. METHODS: A comprehensive literature search was conducted using various databases, including PubMed, Web of Science, The Cochrane Library, Embase, Ovid Medline, CNKI, Wanfang Database, VIP, and CBM. The search encompassed articles published from the inception of the databases until March 2024. The estimated odds ratio (ORs), standard mean difference (SMDs), and hazard ratio (HR) with their corresponding 95% confidence intervals (95% CI) were calculated to assess the predictive value of chemokine and receptor levels in glioma risk. Additionally, heterogeneity tests and bias tests were performed to evaluate the reliability of the findings. RESULTS: This meta-analysis included a total of 36 studies, involving 2,480 patients diagnosed with glioma. The results revealed a significant association between the expression levels of CXCR4 (n = 8; OR = 22.28; 95 % CI = 11.47-43.30; p = 0.000), CXCL12 (n = 4; OR = 10.69; 95 % CI = 7.03-16.24; p = 0.000), CCL2 (n = 6; SMD = -0.83; 95 % CI = -0.98--0.67; p = 0.000), CXCL8 (n = 3; SMD = 0.75; 95 % CI = 0.47-1.04; p = 0.000), CXCR7 (n = 3; OR = 20.66; 95 % CI = 10.20-41.82; p = 0.000), CXCL10 (n = 2; SMD = 3.27; 95 % CI = 2.91-3.62; p = 0.000) and the risk of glioma. Additionally, a significant correlation was observed between CXCR4 (n = 8; OR = 4.39; 95 % CI = 3.04-6.32; p = 0.000), (n = 6; SMD = 1.37; 95 % CI = 1.09-1.65; p = 0.000), CXCL12 (n = 6; OR = 6.30; 95 % CI = 3.87-10.25; p = 0.000), (n = 5; ES = 2.25; 95 % CI = 1.15-3.34; p = 0.041), CCL2 (n = 3; OR = 9.65; 95 % CI = 4.55-20.45; p = 0.000), (n = 4; SMD = -1.47; 95 % CI = -1.68--1.26; p = 0.000), and CCL18 (n = 3; SMD = 1.62; 95 % CI = 1.30-1.93; p = 0.000) expression levels and high-grade glioma (grades 3-4). Furthermore, CXCR4 (HR = 2.38, 95 % CI = 1.66-3.40; p = 0.000) exhibited a strong correlation with poor overall survival (OS) rates in glioma patients. CONCLUSION: The findings of this study showed a robust association between elevated levels of CXCR4, CXCL12, CCL2, CXCL8, CXCL10 and CXCR7 with a higher risk of glioma. Furthermore, the WHO grading system was validated by the strong correlation shown between higher expression of CXCR4, CXCL12, CCL2, and CCL18 and WHO high-grade gliomas (grades 3-4). Furthermore, the results of the meta-analysis suggested that CXCR4 might be a helpful biomarker for predicting the worse prognosis of glioma patients.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Glioma/mortalidad , Glioma/inmunología , Glioma/metabolismo , Pronóstico , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/inmunología , Biomarcadores de Tumor/metabolismo , Quimiocinas/metabolismo , Receptores de Quimiocina/metabolismo , Receptores CXCR4/metabolismo
8.
Genes Chromosomes Cancer ; 63(4): e23233, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38607297

RESUMEN

Medulloblastomas, the most common malignant pediatric brain tumors, can be classified into the wingless, sonic hedgehog (SHH), group 3, and group 4 subgroups. Among them, the SHH subgroup with the TP53 mutation and group 3 generally present with the worst patient outcomes due to their high rates of recurrence and metastasis. A novel and effective treatment for refractory medulloblastomas is urgently needed. To date, the tumor microenvironment (TME) has been shown to influence tumor growth, recurrence, and metastasis through immunosuppression, angiogenesis, and chronic inflammation. Treatments targeting TME components have emerged as promising approaches to the treatment of solid tumors. In this review, we summarize progress in research on medulloblastoma microenvironment components and their interactions. We also discuss challenges and future research directions for TME-targeting medulloblastoma therapy.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Humanos , Niño , Proteínas Hedgehog/genética , Meduloblastoma/genética , Microambiente Tumoral/genética , Neoplasias Cerebelosas/genética
11.
Am J Med Genet A ; 194(5): e63530, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38197511

RESUMEN

MPZL2-related hearing loss is a rare form of autosomal recessive hearing loss characterized by progressive, mild sloping to severe sensorineural hearing loss. Thirty-five previously reported patients had biallelic truncating variants in MPZL2, with the exception of one patient with a missense variant of uncertain significance and a truncating variant. Here, we describe the clinical characteristics and genotypes of five patients from four families with confirmed MPZL2-related hearing loss. A rare missense likely pathogenic variant [NM_005797.4(MPZL2):c.280C>T,p.(Arg94Trp)] located in exon 3 was confirmed to be in trans with a recurrent pathogenic truncating variant that segregated with hearing loss in three of the patients from two unrelated families. This is the first recurrent likely pathogenic missense variant identified in MPZL2. Apparently milder or later-onset hearing loss associated with rare missense variants in MPZL2 indicates that some missense variants in this gene may cause a milder phenotype than that resulting from homozygous or compound heterozygous truncating variants. This study, along with the identification of truncating loss of function and missense MPZL2 variants in several diverse populations, suggests that MPZL2-related hearing loss may be more common than previously appreciated and demonstrates the need for MPZL2 inclusion in hearing loss testing panels.


Asunto(s)
Moléculas de Adhesión Celular , Pérdida Auditiva Sensorineural , Humanos , Moléculas de Adhesión Celular/genética , Sordera/genética , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/patología , Mutación Missense/genética , Linaje , Fenotipo
12.
Genet Med ; 26(3): 101036, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38054408

RESUMEN

PURPOSE: Genetic variants at the low end of the penetrance spectrum have historically been challenging to interpret because their high population frequencies exceed the disease prevalence of the associated condition, leading to a lack of clear segregation between the variant and disease. There is currently substantial variation in the classification of these variants, and no formal classification framework has been widely adopted. The Clinical Genome Resource Low Penetrance/Risk Allele Working Group was formed to address these challenges and promote harmonization within the clinical community. METHODS: The work presented here is the product of internal and community Likert-scaled surveys in combination with expert consensus within the Working Group. RESULTS: We formally recognize risk alleles and low-penetrance variants as distinct variant classes from those causing highly penetrant disease that require special considerations regarding their clinical classification and reporting. First, we provide a preferred terminology for these variants. Second, we focus on risk alleles and detail considerations for reviewing relevant studies and present a framework for the classification these variants. Finally, we discuss considerations for clinical reporting of risk alleles. CONCLUSION: These recommendations support harmonized interpretation, classification, and reporting of variants at the low end of the penetrance spectrum.


Asunto(s)
Variación Genética , Humanos , Alelos , Variación Genética/genética , Penetrancia , Frecuencia de los Genes
13.
J Mol Diagn ; 26(3): 191-201, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38103590

RESUMEN

Inherited bone marrow failure syndromes (IBMFS) are a group of heterogeneous disorders that account for ∼30% of pediatric cases of bone marrow failure and are often associated with developmental abnormalities and cancer predisposition. This article reports the laboratory validation and clinical utility of a large-scale, custom-designed next-generation sequencing panel, Children's Hospital of Philadelphia (CHOP) IBMFS panel, for the diagnosis of IBMFS in a cohort of pediatric patients. This panel demonstrated excellent analytic accuracy, with 100% sensitivity, ≥99.99% specificity, and 100% reproducibility on validation samples. In 269 patients with suspected IBMFS, this next-generation sequencing panel was used for identifying single-nucleotide variants, small insertions/deletions, and copy number variations in mosaic or nonmosaic status. Sixty-one pathogenic/likely pathogenic variants (54 single-nucleotide variants/insertions/deletions and 7 copy number variations) and 24 hypomorphic variants were identified, resulting in the molecular diagnosis of IBMFS in 21 cases (7.8%) and exclusion of IBMFS with a diagnosis of a blood disorder in 10 cases (3.7%). Secondary findings, including evidence of early hematologic malignancies and other hereditary cancer-predisposition syndromes, were observed in 9 cases (3.3%). The CHOP IBMFS panel was highly sensitive and specific, with a significant increase in the diagnostic yield of IBMFS. These findings suggest that next-generation sequencing-based panel testing should be a part of routine diagnostics in patients with suspected IBMFS.


Asunto(s)
Anemia Aplásica , Enfermedades de la Médula Ósea , Hemoglobinuria Paroxística , Humanos , Niño , Anemia Aplásica/diagnóstico , Anemia Aplásica/genética , Enfermedades de la Médula Ósea/diagnóstico , Enfermedades de la Médula Ósea/genética , Síndromes Congénitos de Insuficiencia de la Médula Ósea , Variaciones en el Número de Copia de ADN/genética , Reproducibilidad de los Resultados , Hemoglobinuria Paroxística/diagnóstico , Hemoglobinuria Paroxística/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Nucleótidos
15.
Oncol Res ; 31(6): 929-936, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744277

RESUMEN

Non-small cell lung cancer (NSCLC) is a highly lethal cancer, and better treatments are urgently needed. Many studies have implicated circular RNAs (circRNAs) in the progression of multiple malignant tumors. Nonetheless, the functions of circRNAs in NSCLC remain unclear. To study new targets for the treatment of NSCLC, circRNA expression profiling was performed on NSCLC tissues and para-carcinoma nonmalignant tissues. RNA was isolated and used for circRNA sequencing. Biological studies were performed in vitro and in vivo to determine the functions of circRNAs in NSCLC, including their functions in cell proliferation and migration. How circRNAs function in NSCLC was explored to clarify the underlying regulatory mechanisms. We found that circUCP2 was upregulated in NSCLC tissues compared with neighboring nonmalignant tissues. circUCP2 promoted the proliferation and metastasis of NSCLC cells. circUCP2 promoted NSCLC progression by sponging miR-149 and upregulating UCP2. The circUCP2/miR-149/UCP2 axis accelerates the progression of NSCLC, and circUCP2 may therefore be a novel diagnostic biomarker for the progression of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma , Neoplasias Pulmonares , MicroARNs , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , ARN Circular/genética , Neoplasias Pulmonares/genética , MicroARNs/genética , Proteína Desacopladora 2/genética
16.
J Pediatr ; 262: 113620, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37473993

RESUMEN

OBJECTIVE: To evaluate factors influencing the diagnostic yield of comprehensive gene panel testing (CGPT) for hearing loss (HL) in children and to understand the characteristics of undiagnosed probands. STUDY DESIGN: This was a retrospective cohort study of 474 probands with childhood-onset HL who underwent CGPT between 2016 and 2020 at a single center. Main outcomes and measures included the association between clinical variables and diagnostic yield and the genetic and clinical characteristics of undiagnosed probands. RESULTS: The overall diagnostic yield was 44% (209/474) with causative variants involving 41 genes. While the diagnostic yield was high in the probands with congenital, bilateral, and severe HL, it was low in those with unilateral, noncongenital, or mild HL; cochlear nerve deficiency; preterm birth; neonatal intensive care unit admittance; certain ancestry; and developmental delay. Follow-up studies on 49 probands with initially inconclusive CGPT results changed the diagnostic status to likely positive or negative outcomes in 39 of them (80%). Reflex to exome sequencing on 128 undiagnosed probands by CGPT revealed diagnostic findings in 8 individuals, 5 of whom had developmental delays. The remaining 255 probands were undiagnosed, with 173 (173/255) having only a single variant in the gene(s) associated with autosomal recessive HL and 28% (48/173) having a matched phenotype. CONCLUSION: CGPT efficiently identifies the genetic etiologies of HL in children. CGPT-undiagnosed probands may benefit from follow-up studies or expanded testing.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Nacimiento Prematuro , Femenino , Humanos , Niño , Recién Nacido , Estudios Retrospectivos , Nacimiento Prematuro/genética , Pérdida Auditiva/diagnóstico , Pérdida Auditiva/genética , Sordera/genética , Fenotipo , Pérdida Auditiva Sensorineural/diagnóstico , Pruebas Genéticas/métodos
18.
Hum Mutat ; 43(11): 1531-1544, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36086952

RESUMEN

Long-read sequencing (LRS) has been around for more than a decade, but widespread adoption of the technology has been slow due to the perceived high error rates and high sequencing cost. This is changing due to the recent advancements to produce highly accurate sequences and the reducing costs. LRS promises significant improvement over short read sequencing in four major areas: (1) better detection of structural variation (2) better resolution of highly repetitive or nonunique regions (3) accurate long-range haplotype phasing and (4) the detection of base modifications natively from the sequencing data. Several successful applications of LRS have demonstrated its ability to resolve molecular diagnoses where short-read sequencing fails to identify a cause. However, the argument for increased diagnostic yield from LRS remains to be validated. Larger cohort studies may be required to establish the realistic boundaries of LRS's clinical utility and analytical validity, as well as the development of standards for clinical applications. We discuss the limitations of the current standard of care, and contrast with the applications and advantages of two major LRS platforms, PacBio and Oxford Nanopore, for molecular diagnostics of constitutional disorders, and present a critical argument about the potential of LRS in diagnostic settings.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Patología Molecular , Humanos , Análisis de Secuencia de ADN
19.
Front Endocrinol (Lausanne) ; 13: 865913, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35865311

RESUMEN

In this study, atypical choroid plexus papilloma was treated with high-dose rapamycin for 17 days preoperatively in an infant. Rapamycin significantly reduced the blood supply to the tumor while reducing the tumor volume, and most of the tumor was resected successfully. However, the infant developed hyperglycemia related to the rapamycin dose, which was effectively controlled by adjusting the dose and applying insulin.


Asunto(s)
Neoplasias del Plexo Coroideo , Glioma , Hiperglucemia , Papiloma del Plexo Coroideo , Neoplasias del Plexo Coroideo/patología , Neoplasias del Plexo Coroideo/terapia , Humanos , Hiperglucemia/inducido químicamente , Hiperglucemia/tratamiento farmacológico , Lactante , Papiloma del Plexo Coroideo/patología , Papiloma del Plexo Coroideo/cirugía , Sirolimus/efectos adversos
20.
Hum Mutat ; 43(12): 1837-1843, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35870179

RESUMEN

Synonymous variants have been shown to alter the correct splicing of pre-mRNAs and generate disease-causing transcripts. These variants are not an uncommon etiology of genetic disease; however, they are frequently overlooked during genetic testing in the absence of functional and clinical data. Here, we describe the occurrence of a synonymous variant [NM_005422.4 (TECTA):c.327C>T, p.(Gly109=)] in seven individuals with hearing loss from six unrelated families. The variant is not located near exonic/intronic boundaries but is predicted to impact splicing by activating a cryptic splicing donor site in exon 4 of TECTA. In vitro minigene assays show that the variant disrupts the reading frame of the canonical transcript, which is predicted to cause a premature termination codon 48 amino acids downstream of the variant, leading to nonsense-mediated decay. The variant is present in population databases, predominantly in Latinos of African ancestry, but is rare in other ethnic groups. Our findings suggest that this synonymous variant is likely pathogenic for TECTA-associated autosomal recessive hearing loss and seems to have arisen as a founder variant in this specific Latino subpopulation. This study demonstrates that synonymous variants need careful splicing assessment and support from additional testing methodologies to determine their clinical impact.


Asunto(s)
Sordera , Pérdida Auditiva , Humanos , Sitios de Empalme de ARN , Empalme del ARN/genética , Pérdida Auditiva/genética , Sordera/genética , Exones/genética , Proteínas de la Matriz Extracelular/genética , Proteínas Ligadas a GPI/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...