Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1776, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997552

RESUMEN

Antiferroelectrics (AFEs) are promising candidates in energy-storage capacitors, electrocaloric solid-cooling, and displacement transducers. As an actively studied lead-free antiferroelectric (AFE) material, NaNbO3 has long suffered from its ferroelectric (FE)-like polarization-electric field (P-E) hysteresis loops with high remnant polarization and large hysteresis. Guided by theoretical calculations, a new strategy of reducing the oxygen octahedral tilting angle is proposed to stabilize the AFE P phase (Space group Pbma) of NaNbO3. To validate this, we judiciously introduced CaHfO3 with a low Goldschmidt tolerance factor and AgNbO3 with a low electronegativity difference into NaNbO3, the decreased cation displacements and [BO6] octahedral tilting angles were confirmed by Synchrotron X-ray powder diffraction and aberration-corrected scanning transmission electron microscopy. Of particular importance is that the 0.75NaNbO3-0.20AgNbO3-0.05CaHfO3 ceramic exhibits highly reversible phase transition between the AFE and FE states, showing well-defined double P-E loops and sprout-shaped strain-electric field curves with reduced hysteresis, low remnant polarization, high AFE-FE phase transition field, and zero negative strain. Our work provides a new strategy for designing NaNbO3-based AFE material with well-defined double P-E loops, which can also be extended to discover a variety of new lead-free AFEs.

2.
ACS Appl Mater Interfaces ; 14(19): 22313-22323, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35503741

RESUMEN

As an efficient and economical way of dealing with organic pollutants, piezo-photocatalysis has attracted great interest. In this work, we demonstrated that ferroelectricity and Schottky heterojunction engineering could significantly enhance the piezo-photocatalytic activity of AgNbO3. The poled 20 mol % K+ doped AgNbO3 disclosed its superior piezo-photocatalytic activity of 0.131 min-1 for 10 mg·L-1 RhB, which is 7.8 times of the pristine one under the condition of illumination only. The designed piezo-photocatalyst also exhibited good piezo-photocatalytic stability after four cycles. These merits are attributed to the built-in electric field associated with the large spontaneous polarization and low coercive field originated from the stable ferroelectric state after ferroelectricity engineering, plus with the electron trapper effect of the in situ precipitated metal Ag particles. Our work not only provides a promising piezo-photocatalyst for degrading organic contaminants but also paves a good way for developing high piezo-photocatalytic activity catalysts.

3.
ACS Appl Mater Interfaces ; 13(43): 51218-51229, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34672188

RESUMEN

Environmentally friendly lead-free dielectric ceramics have attracted wide attention because of their outstanding power density, rapid charge/dischargerate, and superior stability. Nevertheless, as a hot material in dielectric ceramic capacitors, the energy storage performance of Na0.5Bi0.5TiO3-based ceramics has been not satisfactory because of their higher remnant polarization value and low dielectric breakdown strength, which is a problem that must be urgently overcome. In this work, the (1 - x) (0.6Na0.5Bi0.5TiO3 - 0.4Sr0.7Bi0.2TiO3) - xBa(Mg1/3Ta2/3)O3 (BNST-xBMT) systems were designed based on a dual optimization strategy of domain and bandgap to solve the above problems. As a result, a record-breaking ultrahigh energy density and excellent efficiency (Wrec = 8.58 J/cm3, η = 93.5%) were obtained simultaneously under 565 kV/cm for the BNST-0.08BMT ceramic. The introduction of Sr0.7Bi0.2TiO3 induces the formation of nanodomains in BNT-based ceramics, leading to slim P-E curves, and the further modification of Mg/Ta reduces the grain sizes and increases the bandgap width, resulting in significant enhancement of the dielectric breakdown strength. Moreover, excellent stability and superior discharge performance (Wd = 4.7 J/cm3, E = 320 kV/cm) in the BNST-0.08BMT ceramic were also achieved. The results suggest that the BNST-0.08BMT ceramic shows potential applicability for dielectric energy storage ceramics. Simultaneously, the composition-design concept in the system provides a good reference for the further development of ceramic dielectric capacitors.

4.
Materials (Basel) ; 14(7)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917489

RESUMEN

Nanobubbles have many potential applications depending on their types. The long-term stability of different gas nanobubbles is necessary to be studied considering their applications. In the present study, five kinds of nanobubbles (N2, O2, Ar + 8%H2, air and CO2) in deionized water and a salt aqueous solution were prepared by the hydrodynamic cavitation method. The mean size and zeta potential of the nanobubbles were measured by a light scattering system, while the pH and Eh of the nanobubble suspensions were measured as a function of time. The nanobubble stability was predicted and discussed by the total potential energies between two bubbles by the extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The nanobubbles, except CO2, in deionized water showed a long-term stability for 60 days, while they were not stable in the 1 mM (milli mol/L) salt aqueous solution. During the 60 days, the bubble size gradually increased and decreased in deionized water. This size change was discussed by the Ostwald ripening effect coupled with the bubble interaction evaluated by the extended DLVO theory. On the other hand, CO2 nanobubbles in deionized water were not stable and disappeared after 5 days, while the CO2 nanobubbles in 1 mM of NaCl and CaCl2 aqueous solution became stable for 2 weeks. The floating and disappearing phenomena of nanobubbles were estimated and discussed by calculating the relationship between the terminal velocity of the floating bubble and bubble size.

5.
RSC Adv ; 11(22): 13386-13395, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35423883

RESUMEN

Searching for a new approach in environmental remediation in terms of dye degradation is important in industrialized society. In this work, ferroelectric Ba2.5Sr2.5Nb8Ta2O30 (BSNT) submicron powders prepared by the high-temperature solid-phase method are used for dye degradation under magnetic stirring. The dye in solution can be quickly degraded by magnetically stirring BSNT submicron particles in the dark in ambient temperature conditions. More importantly, the degradation efficiency can be greatly improved through simple modification of the stirring materials from glass to polypropylene, with a degradation efficiency of rhodamine B as high as 99% in 1.5 h at a gentle stirring speed of 300 rpm. Control experiments reveal that the degradation of the dye is mainly contributed by the friction between BSNT submicron particles and PTFE stirring rods. It is proposed that the friction between ferroelectric polar BSNT particles and PTFE causes charge transfer and induces a non-zero internal electric field to drive the separation of electron-hole pairs in BSNT particles, resulting in a novel tribocatalytic degradation of the dye, which is proven by the detection of ˙OH and ˙O2 - intermediate products during stirring. This work demonstrates that the friction energy of ferroelectric materials with strong polarization is an alternative approach for highly efficient dye degradation.

6.
Nat Commun ; 11(1): 4824, 2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973146

RESUMEN

Dielectric capacitors with high energy storage density (Wrec) and efficiency (η) are in great demand for high/pulsed power electronic systems, but the state-of-the-art lead-free dielectric materials are facing the challenge of increasing one parameter at the cost of the other. Herein, we report that high Wrec of 6.3 J cm-3 with η of 90% can be simultaneously achieved by constructing a room temperature M2-M3 phase boundary in (1-x)AgNbO3-xAgTaO3 solid solution system. The designed material exhibits high energy storage stability over a wide temperature range of 20-150 °C and excellent cycling reliability up to 106 cycles. All these merits achieved in the studied solid solution are attributed to the unique relaxor antiferroelectric features relevant to the local structure heterogeneity and antiferroelectric ordering, being confirmed by scanning transmission electron microscopy and synchrotron X-ray diffraction. This work provides a good paradigm for developing new lead-free dielectrics for high-power energy storage applications.

7.
ACS Appl Mater Interfaces ; 8(24): 15506-17, 2016 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-27244484

RESUMEN

Four series of Pb(Mg1/3Nb2/3)O3-Pb(In1/2Nb1/2)O3-PbZrO3-PbTiO3 (PMN-PIN-PZ-PT) quaternary ceramics with compositions located at the morphotropic phase boundary (MPB) regions were prepared. The MPBs of the multicomponent system were predicted using a linear combination rule and experimentally confirmed by X-ray powder diffraction and electrical measurement. The positions of MPBs in multicomponent systems were found in linear correlation with the tolerance factor and ionic radii of non-PT end-members. The phase structure, piezoelectric coefficient, electromechanical coupling coefficient, unipolar strains, and dielectric properties of as-prepared ceramics were systematically investigated. The largest d33s were obtained at S36.8, L37.4, M39.6, and N35.8, with the corresponding values of 580, 450, 420, and 530 pC/N, respectively, while the largest kps were found at S34.8, L37.4, M39.6, and N35.8, with the respective values of 0.54, 0.50, 0.47, and 0.53. The largest unipolar strain Smax and high-field piezoelectric strain coefficients d33* were also observed around the respective MPB regions. The rhombohedral-to-tetragonal phase transition temperature Trt increased with increasing PIN and PZ contents. Of particular importance is that high Trt of 140-197 °C was achieved in the M series with PZ and PIN contents being around 0.208 and 0.158, which will broaden the temperature usage range.

8.
Sci Rep ; 6: 19965, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26817516

RESUMEN

We report ferroelectricity and self-polarization in the (001) oriented ultrathin relaxor ferroelectric PMN-PT films grown on Nb-SrTiO3, SrRuO3 and La0.7Sr0.3MnO3, respectively. Resistance-voltage measurements and AC impedance analysis suggest that at high temperatures Schottky depletion width in a 4 nm thick PMN-PT film deposited on Nb-SrTiO3 is smaller than the film thickness. We propose that Schottky interfacial dipoles make the dipoles of the nanometer-sized polar nanoregions (PNRs) in PMN-PT films grown on Nb-SrTiO3 point downward at high temperatures and lead to the self-polarization at room temperature with the assistance of in-plane compressive strain. This work sheds light on the understanding of epitaxial strain effects on relaxor ferroelectric films and self-polarization mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...