Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(10): 4103-4110, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38427614

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a 5 year survival rate less than 12%. This malignancy is closely related to the unique tumor microenvironment (TME), which is characterized by a hypovascular and hyperdense extracellular matrix, making it difficult for drugs to permeate the tumor center. Near-infrared fluorescence (NIRF) imaging, which has high sensitivity and resolution, may improve the survival rate of PDAC patients. In this study, we first used JS-K (O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazine-1-yl] diazene-1-ium-1,2-diolate) to specifically dilate blood vessels within the TME of PDAC patients and subsequently injected IR820-PEG-MNPs (IPM NPs) to diagnose and treat orthotopic PDAC. We found that JS-K promoted the accumulation of IPM NPs in orthotopic Pan02 tumor-bearing mice and was able to increase the tumor signal-to-background ratio (SBR) in the orthotopic PDAC area by 41.5%. In addition, surgical navigation in orthotopic Pan02 tumor-bearing mice and complete tumor resection based on fluorescence imaging were achieved with a detection sensitivity of 81.0%. Moreover, we verified the feasibility of the combination of laparoscopy and photothermal ablation (PTA) for the treatment of PDAC. Finally, we demonstrated that IPM NPs had greater affinity for human PDAC tissues than for normal pancreatic tissues ex vivo, preliminarily highlighting the potential for clinical translation of these NPs. In conclusion, we developed and validated a novel sequential delivery strategy that promotes the accumulation of nanoagents in the tumor area and can be used for the diagnosis and treatment of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Melaninas , Medicina de Precisión , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/tratamiento farmacológico , Imagen Óptica/métodos , Línea Celular Tumoral , Microambiente Tumoral
2.
Theranostics ; 13(13): 4469-4481, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37649601

RESUMEN

Rationale: Pancreatic cancer, comprising mostly pancreatic ductal adenocarcinoma (PDAC), is a highly malignant disease, typically known as a hypoxic tumor microenvironment. The application of PDT in pancreatic cancer in clinic is still hampered by several shortcomings, including the (i) deep location of pancreatic cancer, (ii) tissue damage induced by optical fibers, (iii) hypoxic microenvironment, (iv) short excitation wavelengths of traditional photosensitizers, and (v) poor delivery efficiency of photosensitizers. Methods: We designed an organic nanoparticle as photosensitizer for near-infrared II (NIR-II) fluorescent (FL) imaging that exerts a type I PDT effect on deep orthotopic pancreatic tumors under excitation by a NIR (808 nm) laser. Results: This novel photosensitizer exhibits enhanced accumulation in orthotopic pancreatic cancer in mice and could be used to effectively detect pancreatic cancer and guide subsequent laser irradiation for accurate PDT of deep pancreatic cancer. In addition, we built an endoscopic platform monitored by NIR-II FL imaging to achieve minimally invasive endoscopically guided interventional photodynamic therapy (EG-iPDT) with efficient inhibition of orthotopic pancreatic cancer, which prolonged overall survival up to 78 days compared to PBS + EG-iPDT group (*p < 0.05) in a mouse model. Conclusions: Minimally invasive EG-iPDT has promise as an intraoperative treatment for early-stage or unresectable or metastatic pancreatic cancer.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Colorantes Fluorescentes/química , Conductos Pancreáticos/patología , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/terapia , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/terapia , Endoscopios Gastrointestinales , Fotoquimioterapia , Fármacos Fotosensibilizantes , Nanopartículas , Animales , Ratones
3.
Int J Biochem Cell Biol ; 155: 106358, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36584909

RESUMEN

The PARP1 protein plays a key role in DNA damage repair and ADP-ribosylation to regulate gene expression. Strategies to target PARP1 have rapidly been developed for cancer treatment. However, the role of the innate immune response in targeted anti-PARP1 therapy remains poorly understood. In this work, we aimed to elucidate the regulatory mechanism underlying the immunogenicity of PARP1 and explore efficient therapeutic strategies to enhance the antitumor effect of PARP inhibitors. The relationships between PARP1 expression and immunosuppressive factors were examined by qRTPCR and immunoblot analysis. DNA pull-down, chromatin immunoprecipitation-quantitative PCR (ChIPqPCR) and luciferase reporter assays were employed to reveal the mechanism by which the expression of the immune checkpoint regulator CD24 is regulated by PARP1. Phagocytosis assays and pancreatic cancer animal models were applied to evaluate the therapeutic effect of simultaneous disruption of PARP1 and the antiphagocytic factor CD24. Upregulation of the innate immunosuppressive factor CD24 was observed in pancreatic cancer during PARP1 inhibition. The activating effect of targeting CD24 on macrophage phagocytosis was verified. Then, we showed that PARP1 attenuated the transcription of CD24 by ADP-ribosylating the transcription factor DDX5 in pancreatic cancer. Combined blockade of PARP1 and the antiphagocytic factor CD24 elicited a synergetic antitumor effect in pancreatic cancer. Our research provided evidence that combination treatment with PARP inhibitors and CD24 blocking monoclonal antibodies (mAbs) could be an effective strategy to improve the clinical therapeutic response in pancreatic cancer.


Asunto(s)
Neoplasias Pancreáticas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Animales , Reparación del ADN , Regulación de la Expresión Génica , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , ARN Helicasas DEAD-box/metabolismo , Antígeno CD24/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...