Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 17(19): 18669-18687, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37768738

RESUMEN

Tissue engineering and regenerative medicine hold promise for improving or even restoring the function of damaged organs. Graphene-based materials (GBMs) have become a key player in biomaterials applied to tissue engineering and regenerative medicine. A series of cellular and molecular events, which affect the outcome of tissue regeneration, occur after GBMs are implanted into the body. The immunomodulatory function of GBMs is considered to be a key factor influencing tissue regeneration. This review introduces the applications of GBMs in bone, neural, skin, and cardiovascular tissue engineering, emphasizing that the immunomodulatory functions of GBMs significantly improve tissue regeneration. This review focuses on summarizing and discussing the mechanisms by which GBMs mediate the sequential regulation of the innate immune cell inflammatory response. During the process of tissue healing, multiple immune responses, such as the inflammatory response, foreign body reaction, tissue fibrosis, and biodegradation of GBMs, are interrelated and influential. We discuss the regulation of these immune responses by GBMs, as well as the immune cells and related immunomodulatory mechanisms involved. Finally, we summarize the limitations in the immunomodulatory strategies of GBMs and ideas for optimizing GBM applications in tissue engineering. This review demonstrates the significance and related mechanism of the immunomodulatory function of GBM application in tissue engineering; more importantly, it contributes insights into the design of GBMs to enhance wound healing and tissue regeneration in tissue engineering.


Asunto(s)
Grafito , Ingeniería de Tejidos , Materiales Biocompatibles , Inmunidad , Inmunomodulación
2.
EBioMedicine ; 92: 104614, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37229906

RESUMEN

BACKGROUND: Only a minority of melanoma patients experience durable responses to immunotherapies due to inter- and intra-tumoral heterogeneity in melanoma. As a result, there is a pressing need for suitable preclinical models to investigate resistance mechanisms and enhance treatment efficacy. METHODS: Here, we report two different methods for generating melanoma patient-derived organoids (MPDOs), one is embedded in collagen gel, and the other is inlaid in Matrigel. MPDOs in Matrigel are used for assessing the therapeutic effects of anti-PD-1 antibodies (αPD-1), autochthonous tumor infiltrating lymphocytes (TILs), and small molecule compounds. MPDOs in collagen gel are used for evaluating the chemotaxis and migratory capacity of TILs. FINDING: The MPDOs in collagen gel and Matrigel have similar morphology and immune cell composition to their parental melanoma tissues. MPDOs show inter- and intra-tumoral heterogeneity and contain diverse immune cells such as CD4+, CD8+ T, Treg, CD14+ monocytic, CD15+, and CD11b+ myeloid cells. The tumor microenvironment (TME) in MPDOs is highly immunosuppressive, and the lymphoid and myeloid lineages express similar levels of PD-1, PD-L1, and CTLA-4 as their parental melanoma tissues. Anti-PD-1 antibodies (αPD-1) reinvigorate CD8+ T cells and induce melanoma cell death in the MPDOs. TILs expanded by IL-2 and αPD-1 show significantly lower expression of TIM-3, better migratory capacity and infiltration of autochthonous MPDOs, and more effective killing of melanoma cells than TILs expanded by IL-2 alone or IL-2 with αCD3. A small molecule screen discovers that Navitoclax increases the cytotoxicity of TIL therapy. INTERPRETATION: MPDOs may be used to test immune checkpoint inhibitors and cellular and targeted therapies. FUNDING: This work was supported by the NIH grants CA114046, CA261608, CA258113, and the Tara Miller Melanoma Foundation.


Asunto(s)
Linfocitos T CD8-positivos , Melanoma , Humanos , Interleucina-2/metabolismo , Melanoma/tratamiento farmacológico , Inmunoterapia/métodos , Organoides/metabolismo , Linfocitos Infiltrantes de Tumor/metabolismo , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA