Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 25(3)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36981351

RESUMEN

Quantum technology can break through the bottleneck of traditional information technology by ensuring information security, speeding up computation, improving measurement accuracy, and providing revolutionary solutions to some issues of economic and social development [...].

2.
Entropy (Basel) ; 23(12)2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34945900

RESUMEN

As a direct consequence of the interplay between the superposition principle of quantum mechanics and the dynamics of open systems, decoherence is a recurring theme in both foundational and experimental exploration of the quantum realm. Decoherence is intimately related to information leakage of open systems and is usually formulated in the setup of "system + environment" as information acquisition of the environment (observer) from the system. As such, it has been mainly characterized via correlations (e.g., quantum mutual information, discord, and entanglement). Decoherence combined with redundant proliferation of the system information to multiple fragments of environment yields the scenario of quantum Darwinism, which is now a widely recognized framework for addressing the quantum-to-classical transition: the emergence of the apparent classical reality from the enigmatic quantum substrate. Despite the half-century development of the notion of decoherence, there are still many aspects awaiting investigations. In this work, we introduce two quantifiers of classicality via the Jordan product and uncertainty, respectively, and then employ them to quantify decoherence from an information-theoretic perspective. As a comparison, we also study the influence of the system on the environment.

3.
Phys Rev Lett ; 106(12): 120401, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21517284

RESUMEN

We interpret the maximum global effect caused by locally invariant measurements as measurement-induced nonlocality, which is in some sense dual to the geometric measure of quantum discord [Dakic, Vedral, and Brukner, Phys. Rev. Lett. 105, 190502 (2010)]. We quantify measurement-induced nonlocality from a geometric perspective in terms of measurements, and obtain analytical formulas for any dimensional pure states and 2 × n dimensional mixed states. We further derive a tight upper bound to measurement-induced nonlocality in general case. The physical significance of measurement-induced nonlocality is discussed in the context of correlations, entanglement, quantumness, and cryptographic communication.

4.
Phys Rev Lett ; 91(18): 180403, 2003 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-14611271

RESUMEN

The Wigner-Araki-Yanase theorem puts a limitation on the measurement of observables in the presence of a conserved quantity, and the notion of Wigner-Yanase skew information quantifies the amount of information on the values of observables not commuting with the conserved quantity. We demonstrate that the statistical idea underlying the skew information is the Fisher information in the theory of statistical estimation. A quantum Cramér-Rao inequality and a new uncertainty relation in terms of the skew information are established, which shed considerable new light on the relationships between quantum measurement and statistical inference. The result is applied to estimating the evolution speed of quantum states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...