Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(8): e0039024, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39023351

RESUMEN

Filamentous fungi can produce raw-starch-degrading enzyme, however, regulation of production of raw-starch-degrading enzyme remains poorly understood thus far. Here, two novel transcription factors raw-starch-degrading enzyme regulator D (RsrD) and raw-starch-degrading enzyme regulator E (RsrE) were identified to participate in the production of raw-starch-degrading enzyme in Penicillium oxalicum. Individual knockout of rsrD and rsrE in the parental strain Δku70 resulted in 31.1%-92.9% reduced activity of raw-starch-degrading enzyme when cultivated in the presence of commercial starch from corn. RsrD and RsrE contained a basic leucine zipper and a Zn2Cys6-type DNA-binding domain, respectively, but with unknown functions. RsrD and RsrE dynamically regulated the expression of genes encoding major amylases over time, including raw-starch-degrading glucoamylase gene PoxGA15A and α-amylase gene amy13A. Interestingly, RsrD and RsrE regulated each other at transcriptional level, through binding to their own promoter regions; nevertheless, both failed to bind to the promoter regions of PoxGA15A and amy13A, as well as the known regulatory genes for regulation of amylase gene expression. RsrD appears to play an epistatic role in the module RsrD-RsrE on regulation of amylase gene expression. This study reveals a novel regulatory pathway of fungal production of raw-starch-degrading enzyme.IMPORTANCETo survive via combating with complex extracellular environment, filamentous fungi can secrete plant polysaccharide-degrading enzymes that can efficiently hydrolyze plant polysaccharide into glucose or other mono- and disaccharides, for their nutrients. Among the plant polysaccharide-degrading enzymes, raw-starch-degrading enzymes directly degrade and convert hetero-polymeric starch into glucose and oligosaccharides below starch gelatinization temperature, which can be applied in industrial biorefinery to save cost. However, the regulatory mechanism of production of raw-starch-degrading enzyme in fungi remains unknown thus far. Here, we showed that two novel transcription factors raw-starch-degrading enzyme regulator D (RsrD) and raw-starch-degrading enzyme regulator E (RsrE) positively regulate the production of raw-starch-degrading enzyme by Penicillium oxalicum. RsrD and RsrE indirectly control the expression of genes encoding enzymes with amylase activity but directly regulate each other at transcriptional level. These findings expand diversity of gene expression regulation in fungi.


Asunto(s)
Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica , Penicillium , Almidón , Factores de Transcripción , Penicillium/genética , Penicillium/enzimología , Penicillium/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Almidón/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Amilasas/metabolismo , Amilasas/genética , Regiones Promotoras Genéticas
2.
Commun Biol ; 7(1): 848, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992164

RESUMEN

Filamentous fungi produce polysaccharide-degrading enzymes, which is controlled by poorly understood transcriptional circuits. Here we show that a circuit comprising RsrC-RsrA-RsrB (Rsr: production of raw-starch-degrading enzyme regulator) that positively regulates production of raw starch-degrading enzymes in Penicillium oxalicum. Transcription factor (TF) RsrA is essential for biosynthesis of raw starch-degrading enzymes. RsrB and RsrC containing Zn2Cys6- and C2H2-zinc finger domains, act downstream and upstream of RsrA, respectively. RsrA activates rsrB transcription, and three nucleotides (G-286, G-287 and G-292) of rsrB promoter region are required for RsrA, in terms of TF, for binding. RsrB165-271 binds to DNA sequence 5'-TCGATCAGGCACGCC-3' in the promoter region of the gene encoding key raw-starch-degrading enzyme PoxGA15A. RsrC specifically binds rsrA promoter, but not amylase genes, to positively regulate the expression of rsrA and the production of raw starch-degrading enzymes. These findings expand complex regulatory network of fungal raw starch-degrading enzyme biosynthesis.


Asunto(s)
Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica , Penicillium , Factores de Transcripción , Penicillium/genética , Penicillium/metabolismo , Penicillium/enzimología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regiones Promotoras Genéticas , Polisacáridos/metabolismo , Polisacáridos/biosíntesis , Redes Reguladoras de Genes
3.
Mater Horiz ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38915265

RESUMEN

Crack-based flexible strain sensors with ultra-high sensitivity under tiny strain are highly desired for environmental perception and motion detection of novel flexible and miniature robots. However, previously reported methods for fabricating crack patterns have often sacrificed the cyclic stability of the sensor, leading to a trade-off relationship between the sensitivity and the cyclic stability. Here, a universal and simple strategy based on fatigue loading with an ultra-large cumulative strain of up to ∼1.2 × 107%, rather than the traditionally quasi-static pre-overloading methods, is proposed to introduce channel cracks in the sensing layer without sacrificing the cyclic stability. The developed flexible strain sensors exhibit high strain-sensitivity (gauge factor = 5798) under tiny strain (< 3%), high cyclic stability (15 000 cycles) and a low strain detecting limit (0.02%). Furthermore, a leaf-like mechanosensor is developed using the fatigue crack-based strain sensor for the realization of multifunctional applications in environment perception and micro-motion detection. Brilliant airflow sensing performance with a wide sensing range (0.93-11.93 m s-1) and a fast response time (0.28 s) for amphibious applications is demonstrated. This work provides a new strategy for overcoming limits of crack-based flexible strain sensors and the developed leaf-like mechanosensor shows great application potential in miniature and flexible reconnaissance robots.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...