Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(13): e33236, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39027570

RESUMEN

Given that cities are the major contributors to carbon emissions, studying urban compactness (UC) and its impact on carbon emissions from energy consumption (CEECs) is crucial. This study calculated Hangzhou's township-level urban UC and CEECs using a hybrid subjective-objective weighted regression model on integrated panel datasets. By employing a geographically weighted regression (GWR) model, the spatio-temporal heterogeneity of the UC-CEEC relationship from 2006 to 2019 was uncovered. The results indicated an overall increase in UC, with significant variations across different counties. CEECs were higher in the central region, shifting eastward due to distinct urban development levels and policies. Moreover, the effects of various UC factors exhibited significant spatiotemporal inconsistency, with the impact intensity gradually diminishing. Additionally, the explanatory power of these factors declined and diversified over time. These findings emphasize the need for a comprehensive understanding of the relationship between UC and CEECs within the complex metropolitan environment and the importance of regulating their coordinated development. The research not only offers a more scientific approach to managing the growth of county-level cities and supporting balanced urbanization but also presents policy recommendations.

2.
Ultrasonics ; 141: 107348, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38805953

RESUMEN

Structural health monitoring (SHM) of in-service structures is becoming increasingly important. The fundamental shear horizontal (SH0) guided wave mode in plate-like structures shows great potential in damage detection due to its non-dispersive and in-plane vibration properties. In order to generate SH0 waves, a practical Lorentz force-based electromagnetic acoustic transducer (EMAT) was introduced in this study using the flexible circumferential printed circuit (CPC). The designed principle of CPC-EMAT was similar to that of the circumferential magnet array (CMA)-based EMAT. However, the structure of the CMA-EMAT is complex, and it is difficult to assemble for generating high frequency and uniformly distributed omnidirectional SH0 waves. Firstly, the performance of the CMA-EMAT with different numbers of magnets was investigated by finite element simulations. Then, the CPC was proposed to replace the CMA with an optimized designed on its size. The CPC-EMAT is easier to fabricate compared to the CMA-EMAT. Finally, experimental tests were conducted for systematic validations on the transducer properties. Simulation and experimental results show that the CPC-EMAT can successfully generate the desirable and acceptable omnidirectional SH0 waves. The proposed CPC-EMAT is anticipated to find widespread application in SH-typed guided wave-based SHM.

3.
Soft Robot ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38634785

RESUMEN

Spherical movable tensegrity robots, resorting to the intrinsic hallmark of being lightweight and resilient, have exhibited tremendous potential in exploring unpredictable terrains and extreme environments where traditional robots often struggle. The geometry of spherical tensegrities is suitable for rolling locomotion, which guarantees the system to react to changing demands, navigate unexplored terrain, and perform missions even after suffering massive damage. The objective of this article is to enrich the type of spherical movable tensegrity robots with multiple kinematic gait patterns and to gain superior motion paths that are in conformity with the intrinsic features of structural rolling locomotion. Aiming at this purpose, three 12-rod spherical tensegrities with multi-gait patterns are investigated, and the dynamic simulation on independent (or evolutionary) gait patterns is conducted and testified on ADAMS. The routing spaces and the blind zones formed by single kinematic gait are compared to assess the suitability of the assigned kinematic gait pattern. Accordingly, we develop a trajectory planning method with the embedding of the steering control strategy into a modified rapidly exploring random tree (MRRT) algorithm to produce qualified marching routes. In the meantime, two momentous evaluation indictors, applicable to multi-gaits tensegrities, are introduced in searching the corresponding optimal gait patterns that conform to specified needs. The techniques are illustrated and validated in simulation with comparisons on several prototypes of tensegrity robots, indicating that the proposed method is a viable means of attaining marching routes on rolling locomotion of spherical movable tensegrity robots.

4.
Materials (Basel) ; 16(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36676419

RESUMEN

Magnetic shielding devices with a grid structure of multiple layers of highly magnetically permeable materials (such as permalloy) can achieve remanent magnetic fields at the nanotesla (nT) level or even lower. The remanence of the material inside the magnetic shield, such as the building materials used in the support structure, can cause serious damage to the internal remanence of the magnetic shield. Therefore, it is of great significance to detect the remanence of the materials used inside the magnetic shielding device. The existing test methods do not limit the test environment, the test process is vulnerable to additional magnetic field interference and did not consider the real results of the material in the weak magnetic environment. In this paper, a novel method of measuring the remanence of materials in a magnetic shielding cylinder is proposed, which prevents the interference of the earth's magnetic field and reduces the measurement error. This method is used to test concrete components, composite materials and metal materials commonly applicated in magnetic shielding devices and determine the materials that can be used for magnetic shielding devices with 1 nT, 10 nT and 100 nT as residual magnetic field targets.

5.
Sensors (Basel) ; 22(18)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36146234

RESUMEN

Fatigue cracks are typical damage of threaded steel rods under dynamic loads. This paper presents a study on ultrasonic guided waves-based, fatigue-crack detection of threaded rods. A threaded rod with given sizes is theoretically simplified as a cylindrical rod. The propagation characteristics of ultrasonic guided waves in the cylindrical rod are investigated by semi-analytical finite element method and the longitudinal L(0, 1) modal ultrasonic guided waves in low frequency band is proposed for damage detection of the rod. Numerical simulation on the propagation of the proposed ultrasonic guided waves in the threaded rod without damage shows that the thread causes echoes of the ultrasonic guided waves. A numerical study on the propagation of the proposed ultrasonic guided waves in the threaded rod with a crack on the intersection of the smooth segment and the threaded segment shows that both linear indexes (Rf and ARS) and nonlinear indexes (ßre' and ß') are able to detect the crack. A constant-amplitude tensile fatigue experiment was conducted on a specimen of the threaded rod to generate fatigue cracks in the specimen. After every 20,000 loading cycles, the specimen was tested by the proposed ultrasonic guided waves and evaluated by the linear indexes and nonlinear indexes. Experimental results show that both the linear and nonlinear indexes of the ultrasonic guided waves are able to identify the crack before it enters the rapid growth stage and the nonlinear indexes detect the crack easier than the linear indexes.

6.
Materials (Basel) ; 15(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36143661

RESUMEN

In this study, the mechanical responses of a functionally graded thick-walled tube simultaneously under magnetic, thermal and mechanical loads are studied. Based on the assumption that the volume fraction of each phase material is distributed as a power function, the Voigt method is used to obtain the stress-strain relationship of the functionally graded materials (FGMs). The influences of the relevant material parameters including volume fraction, thermal expansion coefficient, and Poisson's ratio on the magneto-thermo-elastic theoretical solution are deeply studied and discussed. Furthermore, when some of the parameters are set as special values, the research results can be degenerated to two coupled loads which are consistent with the existing researches. The results of this paper provide theoretical support for the practical design and application of the FGM tube under the combined action of magnetic, thermal and mechanical loads.

7.
Sensors (Basel) ; 22(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35808289

RESUMEN

Wireless sensor networks usually suffer from the issue of time synchronization discrepancy due to environmental effects or clock management collapse. This will result in time delays between the dynamic responses collected by wireless sensors. If non-synchronized dynamic response data are directly used for structural modal identification, it leads to the misestimation of modal parameters. To overcome the non-synchronization issue, this study proposes a time synchronization approach to detect and correct asynchronous dynamic responses based on frequency domain decomposition (FDD) with frequency-squeezing processing (FSP). By imposing the expected relationship between modal phase angles extracted from the first-order singular value spectrum, the time lags between different sensors can be estimated, and synchronization can be achieved. The effectiveness of the proposed approach is fully demonstrated by numerical and experimental studies, as well as field measurement of a large-span spatial structure. The results verify that the proposed approach is effective for the time synchronization of wireless accelerometer sensors.

8.
Sensors (Basel) ; 22(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35590812

RESUMEN

Axially loaded steel tubes are widely used as primary structural members in civil engineering structures. In this paper, a stress measurement method for axially loaded steel tubes is developed based on the linear relationship between the group velocity of guided waves in the steel tube and the stress of the steel tube. The propagation modes of guided waves in a typical steel tube are analyzed using semi-analytical finite element method. A torsional mode T(0,1) is adopted to conduct the measurement. Experiments are carried out to calibrate the linear relationship between the group velocity of guided waves in a steel tube and the stress of the steel tube. The calibrated linear relationship is verified by another round of experiments on the same steel tube specimen. There is an average error of 8.2% between the stresses predicted by the calibrated linear equation and those obtained from strain gauges. Via this study, the guided wave-based stress measurement method has been successfully extended to axially loaded steel tubes.

9.
Artículo en Inglés | MEDLINE | ID: mdl-36612713

RESUMEN

The COVID-19 pandemic has already resulted in more than 6 million deaths worldwide as of December 2022. The COVID-19 has also been greatly affecting the activity of the human population in China and the world. It remains unclear how the human activity-intensity changes have been affected by the COVID-19 spread in China at its different stages along with the lockdown and relaxation policies. We used four days of Location-based services data from Tencent across China to capture the real-time changes in human activity intensity in three stages of COVID-19-namely, during the lockdown, at the first stage of work resuming and at the stage of total work resuming-and observed the changes in different land use categories. We applied the mean decrease Gini (MDG) approach in random forest to examine how these changes are influenced by land attributes, relying on the CART algorithm in Python. This approach was also compared with Geographically Weighted Regression (GWR). Our analysis revealed that the human activity intensity decreased by 22-35%, 9-16% and 6-15%, respectively, in relation to the normal conditions before the spread of COVID-19 during the three periods. The human activity intensity associated with commercial sites, sports facilities/gyms and tourism experienced the relatively largest contraction during the lockdown. During the relaxations of restrictions, government institutions showed a 13.89% rise in intensity at the first stage of work resuming, which was the highest rate among all the working sectors. Furthermore, the GDP and road junction density were more influenced by the change in human activity intensity for all land use categories. The bus stop density was importantly associated with mixed-use land recovery during the relaxing stages, while the coefficient of density of population in entertainment land were relatively higher at these two stages. This study aims to provide additional support to investigate the human activity changes due to the spread of COVID-19 at different stages across different sectors.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Pandemias , Pueblos del Este de Asia , Control de Enfermedades Transmisibles , Actividades Humanas
10.
J Biomech ; 41(11): 2379-87, 2008 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-18632107

RESUMEN

Stress fibers are contractile bundles in the cytoskeleton that stabilize cell structure by exerting traction forces on the extracellular matrix. Individual stress fibers are molecular bundles composed of parallel actin and myosin filaments linked by various actin-binding proteins, which are organized end-on-end in a sarcomere-like pattern within an elongated three-dimensional network. While measurements of single stress fibers in living cells show that they behave like tensed viscoelastic fibers, precisely how this mechanical behavior arises from this complex supramolecular arrangement of protein components remains unclear. Here we show that computationally modeling a stress fiber as a multi-modular tensegrity network can predict several key behaviors of stress fibers measured in living cells, including viscoelastic retraction, fiber splaying after severing, non-uniform contraction, and elliptical strain of a puncture wound within the fiber. The tensegrity model can also explain how they simultaneously experience passive tension and generate active contraction forces; in contrast, a tensed cable net model predicts some, but not all, of these properties. Thus, tensegrity models may provide a useful link between molecular and cellular scale mechanical behaviors and represent a new handle on multi-scale modeling of living materials.


Asunto(s)
Actinas , Modelos Biológicos , Fibras de Estrés/fisiología , Elasticidad , Estrés Mecánico , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...