Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Protein Expr Purif ; 221: 106520, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38833752

RESUMEN

Staphylococcus aureus (S. aureus) presents a significant challenge in both nosocomial and community settings due to its pathogenicity. The emergence of drug-resistant strains exacerbates S. aureus infections, leading to increased mortality rates. PyrG, a member of the cytidine triphosphate (CTP) synthase family, serves as a crucial therapeutic target against S. aureus due to the pivotal role of CTP in cellular metabolism. However, the structural and mechanistic details of S. aureus PyrG remains unknown. Here, we successfully expressed and purified monomeric PyrG. Mutational experiments were conducted based on the results of molecular docking. Based on the results of the molecular docking, we carried out mutation experiments and found that Q386A dramatically decreased the CTP synthase activity compared to the wild-type protein, while Y54A almost completely abolished the activity. Exposure of S. aureus to the kinase inhibitor crizotinib increased expression of gene pyrG. Our results identify the two key sites on PyrG for the CTP synthase activity, and present PyrG gene expression increased during the treatment of crizotinib, which may eventually provide valuable guidance for the development of new drugs against S. aureus infections.


Asunto(s)
Proteínas Bacterianas , Ligasas de Carbono-Nitrógeno , Staphylococcus aureus , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/metabolismo , Ligasas de Carbono-Nitrógeno/aislamiento & purificación , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/biosíntesis , Expresión Génica , Simulación del Acoplamiento Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biosíntesis
2.
Light Sci Appl ; 13(1): 83, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38584167

RESUMEN

The analysis of optical spectra-emission or absorption-has been arguably the most powerful approach for discovering and understanding matter. The invention and development of many kinds of spectrometers have equipped us with versatile yet ultra-sensitive diagnostic tools for trace gas detection, isotope analysis, and resolving hyperfine structures of atoms and molecules. With proliferating data and information, urgent and demanding requirements have been placed today on spectrum analysis with ever-increasing spectral bandwidth and frequency resolution. These requirements are especially stringent for broadband laser sources that carry massive information and for dispersive devices used in information processing systems. In addition, spectrum analyzers are expected to probe the device's phase response where extra information is encoded. Here we demonstrate a novel vector spectrum analyzer (VSA) that is capable of characterizing passive devices and active laser sources in one setup. Such a dual-mode VSA can measure loss, phase response, and dispersion properties of passive devices. It also can coherently map a broadband laser spectrum into the RF domain. The VSA features a bandwidth of 55.1 THz (1260-1640 nm), a frequency resolution of 471 kHz, and a dynamic range of 56 dB. Meanwhile, our fiber-based VSA is compact and robust. It requires neither high-speed modulators and photodetectors nor any active feedback control. Finally, we employ our VSA for applications including characterization of integrated dispersive waveguides, mapping frequency comb spectra, and coherent light detection and ranging (LiDAR). Our VSA presents an innovative approach for device analysis and laser spectroscopy, and can play a critical role in future photonic systems and applications for sensing, communication, imaging, and quantum information processing.

3.
Opt Express ; 31(22): 36209-36218, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-38017775

RESUMEN

Non-line-of-sight (NLOS) technology has been rapidly developed in recent years, allowing us to visualize or localize hidden objects by analyzing the returned photons, which is expected to be applied to autonomous driving, field rescue, etc. Due to the laser attenuation and multiple reflections, it is inevitable for future applications to separate the returned extremely weak signal from noise. However, current methods find signals by direct accumulation, causing noise to be accumulated simultaneously and inability of extracting weak targets. Herein, we explore two denoising methods without accumulation to detect the weak target echoes, relying on the temporal correlation feature. In one aspect, we propose a dual-detector method based on software operations to improve the detection ability for weak signals. In the other aspect, we introduce the pipeline method for NLOS target tracking in sequential histograms. Ultimately, we experimentally demonstrated these two methods and extracted the motion trajectory of the hidden object. The results may be useful for practical applications in the future.

4.
Metabolism ; 149: 155695, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37802200

RESUMEN

BACKGROUND: Gestational diabetes (GDM) is a distinctive form of diabetes that first presents in pregnancy. While most women return to normoglycemia after delivery, they are nearly ten times more likely to develop type 2 diabetes than women with uncomplicated pregnancies. Current prevention strategies remain limited due to our incomplete understanding of the early underpinnings of progression. AIM: To comprehensively characterize the postpartum profiles of women shortly after a GDM pregnancy and identify key mechanisms responsible for the progression to overt type 2 diabetes using multi-dimensional approaches. METHODS: We conducted a nested case-control study of 200 women from the Study of Women, Infant Feeding and Type 2 Diabetes After GDM Pregnancy (SWIFT) to examine biochemical, proteomic, metabolomic, and lipidomic profiles at 6-9 weeks postpartum (baseline) after a GDM pregnancy. At baseline and annually up to two years, SWIFT administered research 2-hour 75-gram oral glucose tolerance tests. Women who developed incident type 2 diabetes within four years of delivery (incident case group, n = 100) were pair-matched by age, race, and pre-pregnancy body mass index to those who remained free of diabetes for at least 8 years (control group, n = 100). Correlation analyses were used to assess and integrate relationships across profiling platforms. RESULTS: At baseline, all 200 women were free of diabetes. The case group was more likely to present with dysglycemia (e.g., impaired fasting glucose levels, glucose tolerance, or both). We also detected differences between groups across all omic platforms. Notably, protein profiles revealed an underlying inflammatory response with perturbations in protease inhibitors, coagulation components, extracellular matrix components, and lipoproteins, whereas metabolite and lipid profiles implicated disturbances in amino acids and triglycerides at individual and class levels with future progression. We identified significant correlations between profile features and fasting plasma insulin levels, but not with fasting glucose levels. Additionally, specific cross-omic relationships, particularly among proteins and lipids, were accentuated or activated in the case group but not the control group. CONCLUSIONS: Overall, we applied orthogonal, complementary profiling techniques to uncover an inflammatory response linked to elevated triglyceride levels shortly after a GDM pregnancy, which is more pronounced in women who progress to overt diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Lactante , Embarazo , Femenino , Humanos , Niño , Estudios de Casos y Controles , Proteómica , Glucosa
5.
Phys Rev Lett ; 130(7): 070801, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36867807

RESUMEN

Quantum metrology employs quantum resources to enhance the measurement sensitivity beyond that can be achieved classically. While multiphoton entangled N00N states can in principle beat the shot-noise limit and reach the Heisenberg limit, high N00N states are difficult to prepare and fragile to photon loss which hinders them from reaching unconditional quantum metrological advantages. Here, we combine the idea of unconventional nonlinear interferometers and stimulated emission of squeezed light, previously developed for the photonic quantum computer Jiuzhang, to propose and realize a new scheme that achieves a scalable, unconditional, and robust quantum metrological advantage. We observe a 5.8(1)-fold enhancement above the shot-noise limit in the Fisher information extracted per photon, without discounting for photon loss and imperfections, which outperforms ideal 5-N00N states. The Heisenberg-limited scaling, the robustness to external photon loss, and the ease-of-use of our method make it applicable in practical quantum metrology at a low photon flux regime.

6.
Artículo en Inglés | MEDLINE | ID: mdl-36078803

RESUMEN

With the successful completion of the battle against poverty, after 2020, the focus and difficulty of China's poverty governance will change from solving absolute poverty to alleviating relative poverty. Analyzing and studying the alleviation of relative poverty from the perspective of public health services is in line with the current needs of consolidating and expanding poverty alleviation in China, and it is also of great significance to building a long-term solution mechanism for relative poverty. In this study, basic panel data were constructed by using the data of five CFPS surveys in 2010, 2012, 2014, 2016, and 2018 and matched with the macro data. The correlation between public health services and rural households' relative poverty was also analyzed by using logit regression analysis and the KHB mediation effect decomposition method. The results show that (1) public health services play a significant role in promoting the accumulation of health human capital, improving individual feasible ability, and alleviating the relative poverty of rural families; (2) the improvement of public health services is conducive to the alleviation of the relative poverty of rural families; (3) we should continue to increase investment in public health care in underdeveloped areas and strive to promote the balanced development of public health services, so as to further consolidate and expand the achievements of poverty eradication.


Asunto(s)
Pobreza , Salud Pública , China , Composición Familiar , Humanos , Población Rural
7.
Phys Rev Lett ; 127(23): 230503, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34936806

RESUMEN

Quantum self-testing is a device-independent way to certify quantum states and measurements using only the input-output statistics, with minimal assumptions about the quantum devices. Because of the high demand on tolerable noise, however, experimental self-testing was limited to two-photon systems. Here, we demonstrate the first robust self-testing for multiphoton genuinely entangled quantum states. We prepare two examples of four-photon graph states, the Greenberger-Horne-Zeilinger states with a fidelity of 0.957(2) and the linear cluster states with a fidelity of 0.945(2). Based on the observed input-output statistics, we certify the genuine four-photon entanglement and further estimate their qualities with respect to realistic noise in a device-independent manner.

8.
Phys Rev Lett ; 127(18): 180502, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34767431

RESUMEN

We report phase-programmable Gaussian boson sampling (GBS) which produces up to 113 photon detection events out of a 144-mode photonic circuit. A new high-brightness and scalable quantum light source is developed, exploring the idea of stimulated emission of squeezed photons, which has simultaneously near-unity purity and efficiency. This GBS is programmable by tuning the phase of the input squeezed states. The obtained samples are efficiently validated by inferring from computationally friendly subsystems, which rules out hypotheses including distinguishable photons and thermal states. We show that our GBS experiment passes a nonclassicality test based on inequality constraints, and we reveal nontrivial genuine high-order correlations in the GBS samples, which are evidence of robustness against possible classical simulation schemes. This photonic quantum computer, Jiuzhang 2.0, yields a Hilbert space dimension up to ∼10^{43}, and a sampling rate ∼10^{24} faster than using brute-force simulation on classical supercomputers.

9.
Proc Natl Acad Sci U S A ; 118(36)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34479998

RESUMEN

Quantum error correction is an essential tool for reliably performing tasks for processing quantum information on a large scale. However, integration into quantum circuits to achieve these tasks is problematic when one realizes that nontransverse operations, which are essential for universal quantum computation, lead to the spread of errors. Quantum gate teleportation has been proposed as an elegant solution for this. Here, one replaces these fragile, nontransverse inline gates with the generation of specific, highly entangled offline resource states that can be teleported into the circuit to implement the nontransverse gate. As the first important step, we create a maximally entangled state between a physical and an error-correctable logical qubit and use it as a teleportation resource. We then demonstrate the teleportation of quantum information encoded on the physical qubit into the error-corrected logical qubit with fidelities up to 0.786. Our scheme can be designed to be fully fault tolerant so that it can be used in future large-scale quantum technologies.

10.
Science ; 370(6523): 1460-1463, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33273064

RESUMEN

Quantum computers promise to perform certain tasks that are believed to be intractable to classical computers. Boson sampling is such a task and is considered a strong candidate to demonstrate the quantum computational advantage. We performed Gaussian boson sampling by sending 50 indistinguishable single-mode squeezed states into a 100-mode ultralow-loss interferometer with full connectivity and random matrix-the whole optical setup is phase-locked-and sampling the output using 100 high-efficiency single-photon detectors. The obtained samples were validated against plausible hypotheses exploiting thermal states, distinguishable photons, and uniform distribution. The photonic quantum computer, Jiuzhang, generates up to 76 output photon clicks, which yields an output state-space dimension of 1030 and a sampling rate that is faster than using the state-of-the-art simulation strategy and supercomputers by a factor of ~1014.

11.
Phys Rev Lett ; 125(21): 210502, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33274970

RESUMEN

Quantum no-cloning, the impossibility of perfectly cloning an arbitrary unknown quantum state, is one of the most fundamental limitations due to the laws of quantum mechanics, which underpin the physical security of quantum key distribution. Quantum physics does allow, however, approximate cloning with either imperfect state fidelity and/or probabilistic success. Whereas approximate quantum cloning of single-particle states has been tested previously, experimental cloning of quantum entanglement-a highly nonclassical correlation-remained unexplored. Based on a multiphoton linear optics platform, we demonstrate quantum cloning of two-photon entangled states for the first time. Remarkably our results show that one maximally entangled photon pair can be broadcast into two entangled pairs, both with state fidelities above 50%. Our results are a key step towards cloning of complex quantum systems, and are likely to provide new insights into quantum entanglement.

12.
Phys Rev Lett ; 123(7): 070505, 2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31491117

RESUMEN

Quantum teleportation allows a "disembodied" transmission of unknown quantum states between distant quantum systems. Yet, all teleportation experiments to date were limited to a two-dimensional subspace of quantized multiple levels of the quantum systems. Here, we propose a scheme for teleportation of arbitrarily high-dimensional photonic quantum states and demonstrate an example of teleporting a qutrit. Measurements over a complete set of 12 qutrit states in mutually unbiased bases yield a teleportation fidelity of 0.75(1), which is well above both the optimal single-copy qutrit state-estimation limit of 1/2 and maximal qubit-qutrit overlap of 2/3, thus confirming a genuine and nonclassical three-dimensional teleportation. Our work will enable advanced quantum technologies in high dimensions, since teleportation plays a central role in quantum repeaters and quantum networks.

13.
Proc Natl Acad Sci U S A ; 116(5): 1549-1552, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30635427

RESUMEN

We experimentally demonstrate that when three single photons transmit through two polarization channels, in a well-defined pre- and postselected ensemble, there are no two photons in the same polarization channel by weak-strength measurement, a counterintuitive quantum counting effect called the quantum pigeonhole paradox. We further show that this effect breaks down in second-order measurement. These results indicate the existence of the quantum pigeonhole paradox and its operating regime.

14.
Phys Rev Lett ; 121(10): 100502, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30240268

RESUMEN

Periodically driven systems have displayed a variety of fascinating phenomena without analogies in static systems, which enrich the classification of quantum phases of matter and stimulate a wide range of research interests. Here, we employ discrete-time quantum walks to investigate a nontrivial topological effect unique to a two-dimensional periodically driven system: chiral edge states can exist at the interface of Floquet insulators whose Chern numbers vanish. Thanks to a resource-saving and flexible fiber-loop architecture, we realize inhomogeneous two-dimensional quantum walks up to 25 steps, over an effective 51×51 lattice with tunable local parameters. Spin-polarized chiral edge states are observed at the boundary of two distinct quantum walk domains. Our results contribute to establishing a well-controlled platform for exploring nontrivial topological phases.

15.
Phys Rev Lett ; 120(26): 260502, 2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-30004724

RESUMEN

Full control of multiple degrees of freedom of multiple particles represents a fundamental ability for quantum information processing. We experimentally demonstrate an 18-qubit Greenberger-Horne-Zeilinger entanglement by simultaneous exploiting three different degrees of freedom of six photons, including their paths, polarization, and orbital angular momentum. We develop high-stability interferometers for reversible quantum logic operations between the photons' different degrees of freedom with precision and efficiencies close to unity, enabling simultaneous readout of 2^{18}=262 144 outcome combinations of the 18-qubit state. A state fidelity of 0.708±0.016 is measured, confirming the genuine entanglement of all 18 qubits.

16.
Sci Bull (Beijing) ; 63(24): 1611-1615, 2018 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36658852

RESUMEN

Since the pillars of quantum theory were established, it was already noted that quantum physics may allow certain correlations defying any local realistic picture of nature, as first recognized by Einstein, Podolsky and Rosen. These quantum correlations, now termed quantum nonlocality and tested by violation of Bell's inequality that consists of statistical correlations fulfilling local realism, have found loophole-free experimental confirmation. A more striking way to demonstrate the conflict exists, and can be extended to the multipartite scenario. Here we report experimental confirmation of such a striking way, the multipartite generalized Hardy's paradoxes, in which no inequality is used and the conflict is stronger than that within just two parties. The paradoxes we consider here belong to a general framework [S.-H. Jiang et al., Phys. Rev. Lett. 120 (2018) 050403], including previously known multipartite extensions of Hardy's original paradox as special cases. The conflict shown here is stronger than in previous multipartite Hardy's paradox. Thus, the demonstration of Hardy-typed quantum nonlocality becomes sharper than ever.

17.
Sensors (Basel) ; 16(6)2016 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-27294926

RESUMEN

Blind image restoration algorithms for motion blur have been deeply researched in the past years. Although great progress has been made, blurred images containing large blur and rich, small details still cannot be restored perfectly. To deal with these problems, we present a robust image restoration algorithm for motion blur of general image sensors in this paper. Firstly, we propose a self-adaptive structure extraction method based on the total variation (TV) to separate the reliable structures from textures and small details of a blurred image which may damage the kernel estimation and interim latent image restoration. Secondly, we combine the reliable structures with priors of the blur kernel, such as sparsity and continuity, by a two-step method with which noise can be removed during iterations of the estimation to improve the precision of the estimated blur kernel. Finally, we use a MR-based Wiener filter as the non-blind deconvolution algorithm to restore the final latent image. Experimental results demonstrate that our algorithm can restore large blur images with rich, small details effectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...