Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anim Sci J ; 88(2): 314-321, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27245869

RESUMEN

This study aimed to evaluate the effects of cysteamine supplementation on the expression of jejunal amino acid and peptide transporters and intestinal health in finishing pigs. Sixty barrows were allocated into two experimental diets consisting of a basal control diet supplemented with 0 or 142 mg/kg cysteamine. After 41 days, 10 pigs per treatment were slaughtered. The results showed that cysteamine supplementation increased the apparent digestibility of crude protein (CP) (P < 0.05) and the trypsin activity in jejunal digesta (P < 0.01). Cysteamine supplementation also increased the messenger RNA abundance of SLC7A7, SLC7A9 and SLC15A1, occludin, claudin-1 and zonula occludens protein-1 (P < 0.001) in the jejunum mucosa. Increased glutathione content (P < 0.01) and glutathione peroxidase activity (P < 0.05) and decreased malondialdehyde content (P < 0.01) were observed in pigs receiving cysteamine. Additionally, cysteamine supplementation increased the concentrations of secretory immunoglobulin A (IgA) (P < 0.05), IgM (P < 0.001) and IgG (P < 0.001) in the jejunal mucosa. It is concluded that cysteamine supplementation could influence protein digestion and absorption via increasing trypsin activity, enhancing the digestibility of CP, and promoting the expression of jejunal amino acid and peptide transporters. Moreover, cysteamine improved intestinal integrity, antioxidant capacity and immune function in the jejunum, which were beneficial for intestinal health.


Asunto(s)
Aminoácidos/metabolismo , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Fenómenos Fisiológicos Nutricionales de los Animales/fisiología , Cisteamina/administración & dosificación , Cisteamina/farmacología , Dieta/veterinaria , Suplementos Dietéticos , Yeyuno/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Porcinos/metabolismo , Porcinos/fisiología , Animales , Antioxidantes/metabolismo , Proteínas en la Dieta/metabolismo , Digestión/efectos de los fármacos , Yeyuno/enzimología , Yeyuno/inmunología , Masculino , Tripsina/metabolismo
2.
PLoS One ; 10(9): e0139393, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26422009

RESUMEN

Dietary protein levels and cysteamine (CS) supplementation can affect growth performance and protein metabolism of pigs. However, the influence of dietary protein intake on the growth response of CS-treated pigs is unclear, and the mechanisms involved in protein metabolism remain unknown. Hence, we investigated the interactions between dietary protein levels and CS supplementation and the effects of dietary crude protein levels and CS supplementation on protein synthetic and degradative signaling in skeletal muscle of finishing pigs. One hundred twenty barrows (65.84 ± 0.61 kg) were allocated to a 2 × 2 factorial arrangement with five replicates of six pigs each. The primary variations were dietary crude protein (CP) levels (14% or 10%) and CS supplemental levels (0 or 700 mg/kg). The low-protein (LP) diets (10% CP) were supplemented with enough essential amino acids (EAA) to meet the NRC AA requirements of pigs and maintain the balanced supply of eight EAA including lysine, methionine, threonine, tryptophan, valine, phenylalanine, isoleucine, and leucine. After 41 days, 10 pigs per treatment were slaughtered. We found that LP diets supplemented with EAA resulted in decreased concentrations of plasma somatostatin (SS) (P<0.01) and plasma urea nitrogen (PUN) (P<0.001), while dietary protein levels did not affect other traits. However, CS supplementation increased the average daily gain (P<0.001) and lean percentage (P<0.05), and decreased the feed conversion ratio (P<0.05) and back fat (P<0.05). CS supplementation also increased the concentrations of plasma insulin-like growth factor 1 (IGF-1) (P<0.001), and reduced the concentrations of leptin, SS, and PUN (P<0.001). Increased mRNA abundance of Akt1 and IGF-1 signaling (P<0.001) and decreased mRNA abundance of Forkhead Box O (FOXO) 4 (P<0.01) and muscle atrophy F-box (P<0.001) were observed in pigs receiving CS. Additionally, CS supplementation increased the protein levels for the phosphorylated mammalian target of rapamycin (mTOR), eIF-4E binding protein 1, and ribosomal protein S6 kinase 1 (P<0.001). There were no interactions between dietary protein levels and CS supplementation for all traits. In conclusion, dietary protein levels and CS supplementation influenced growth and protein metabolism through independent mechanisms in pigs. In addition, LP diets supplemented with EAA did not affect growth performance and other traits except the concentrations of SS and PUN probably through maintenance of protein synthesis and degradation signaling. Moreover, CS supplementation improved growth performance by increasing plasma IGF-1 concentrations possibly through alterations of mTOR and Akt/FOXO signaling pathways in skeletal muscle of finishing pigs.


Asunto(s)
Alimentación Animal/análisis , Cisteamina/metabolismo , Dieta con Restricción de Proteínas , Proteínas en la Dieta/metabolismo , Suplementos Dietéticos , Músculo Esquelético/metabolismo , Sus scrofa , Aminoácidos Esenciales/metabolismo , Animales , Expresión Génica , Factor I del Crecimiento Similar a la Insulina/metabolismo , Redes y Vías Metabólicas , Músculo Esquelético/crecimiento & desarrollo , Biosíntesis de Proteínas , Proteolisis , ARN Mensajero/metabolismo , Porcinos , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...