Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202407417, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818653

RESUMEN

Realizing durative dense, dendrite-free, and no by-product deposition configuration on Zn anodes is crucial to solving the short circuit and premature failure of batteries, which is simultaneously determined by the Zn interface chemistry, electro-reduction kinetics, mass transfer process, and their interaction. Herein, this work unmasks a domino effect of the ß-alanine cations (Ala+) within the hydrogel matrix, which effectively triggers the subsequent electrostatic shielding and beneficial knock-on effects via the specifical adsorption earliest event on the Zn anode surface. The electrostatic shielding effect regulates the crystallographic energetic preference of Zn deposits and retards fast electro-reduction kinetics, thereby steering stacked stockier block morphology and realizing crystallographic optimization. Meanwhile, the mass transfer rate of Zn2+ ions was accelerated via the SO4 2- anion immobilized caused by Ala+ in bulk electrolyte, finally bringing the balance between electroreduction kinetics and mass transfer process, which enables dendrite-free Zn deposition behavior. Concomitantly, the interfacial adsorbed Ala+ cations facilitate the electrochemical reduction of interfacial SO4 2- anions to form the inorganic-organic hybrid solid electrolyte interphase layer. The above domino effects immensely improve the utilization efficiency of Zn anodes and long-term stability, as demonstrated by the 12 times longer life of Zn||Zn cells (3650 h) and ultrahigh Coulombic efficiency (99.4 %).

3.
Front Aging Neurosci ; 14: 1073310, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36688161

RESUMEN

Background/Objective: The efficacy of transcranial magnetic stimulation (TMS) on Parkinson's disease (PD) varies across the stimulation targets. This study aims to estimate the effect of different TMS targets on motor symptoms in PD. Methods: A Bayesian hierarchical model was built to assess the effects across different TMS targets, and the rank probabilities and the surface under the cumulative ranking curve (SUCRA) values were calculated to determine the ranks of each target. The primary outcome was the Unified Parkinson's Disease Rating Scale part-III. Inconsistency between direct and indirect comparisons was assessed using the node-splitting method. Results: Thirty-six trials with 1,122 subjects were included for analysis. The pair-wise meta-analysis results showed that TMS could significantly improve motor symptoms in PD patients. Network meta-analysis results showed that the high-frequency stimulation over bilateral M1, bilateral DLPFC, and M1+DLPFC could significantly reduce the UPDRS-III scores compared with sham conditions. The high-frequency stimulation over both M1 and DLPFC had a more significant effect when compared with other parameters, and ranked first with the highest SCURA value. There was no significant inconsistency between direct and indirect comparisons. Conclusion: Considering all settings reported in our research, high-frequency stimulation over bilateral M1 or bilateral DLPFC has a moderate beneficial effect on the improvement of motor symptoms in PD (high confidence rating). High-frequency stimulation over M1+DLPFC has a prominent beneficial effect and appears to be the most effective TMS parameter setting for ameliorating motor symptoms of PD patients (high confidence rating).

4.
Nanoscale Res Lett ; 16(1): 165, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34807315

RESUMEN

Evidence has demonstrated that microRNA-342-5p (miR-342-5p) is implicated in atherosclerosis (AS), but little is known regarding its intrinsic regulatory mechanisms. Here, we aimed to explore the effect of miR-342-5p targeting Wnt3a on formation of vulnerable plaques and angiogenesis of AS. ApoE-/- mice were fed with high-fat feed for 16 w to replicate the AS vulnerable plaque model. miR-342-5p and Wnt3a expression in aortic tissues of AS were detected. The target relationship between miR-342-5p and Wnt3a was verified. Moreover, ApoE-/- mice were injected with miR-342-5p antagomir and overexpression-Wnt3a vector to test their functions in serum lipid levels, inflammatory and oxidative stress-related cytokines, aortic plaque stability and angiogenesis in plaque of AS mice. miR-342-5p expression was enhanced and Wnt3a expression was degraded in aortic tissues of AS mice and miR-342-5p directly targeted Wnt3a. Up-regulating Wnt3a or down-regulating miR-342-5p reduced blood lipid content, inflammatory and oxidative stress levels, the vulnerability of aortic tissue plaque and inhibited angiogenesis in aortic plaque of AS mice. Functional studies show that depleting miR-342-5p can stabilize aortic tissue plaque and reduce angiogenesis in plaque in AS mice via restoring Wnt3a.

5.
Sci Total Environ ; 565: 547-556, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27203516

RESUMEN

Sulfamethoxazole (SMX), an extensively prescribed or administered antibiotic pharmaceutical product, is usually detected in aquatic environments, because of its incomplete metabolism and elimination. This study investigated the effects of exogenous cofactors on the bioremoval and biotransformation of SMX by Alcaligenes faecalis. High concentration (100mg·L(-1)) of exogenous vitamin C (VC), vitamin B6 (VB6) and oxidized glutathione (GSSG) enhanced SMX bioremoval, while the additions of vitamin B2 (VB2) and vitamin B12 (VB12) did not significantly alter the SMX removal efficiency. Globally, cellular growth of A. faecalis and SMX removal both initially increased and then gradually decreased, indicating that SMX bioremoval is likely dependent on the primary biomass activity of A. faecalis. The decreases in the SMX removal efficiency indicated that some metabolites of SMX might be transformed into parent compound at the last stage of incubation. Two transformation products of SMX, N-hydroxy sulfamethoxazole (HO-SMX) and N4-acetyl sulfamethoxazole (Ac-SMX), were identified by a high-performance liquid chromatograph coupled with mass spectrometer. High concentrations of VC, nicotinamide adenine dinucleotide hydrogen (NADH, 7.1mg·L(-1)), and nicotinamide adenine dinucleotide (NAD(+), 6.6mg·L(-1)), and low concentrations of reduced glutathione (GSH, 0.1 and 10mg·L(-1)) and VB2 (1mg·L(-1)) remarkably increased the formation of HO-SMX, while VB12 showed opposite effects on HO-SMX formation. In addition, low concentrations of GSH and NADH enhanced Ac-SMX formation by the addition of A. faecalis, whereas cofactors (VC, VB2, VB12, NAD(+), and GSSG) had no obvious impact on the formation of Ac-SMX compared with the controls. The levels of Ac-SMX were stable when biomass of A. faecalis gradually decreased, indicating the direct effect of biomass on the formation of Ac-SMX by A. faecalis. In sum, these results help us understand the roles played by exogenous cofactors in eliminating SMX by A. faecalis and provide potential strategies for improving SMX biodegradation.


Asunto(s)
Alcaligenes faecalis/metabolismo , Antibacterianos/metabolismo , Biodegradación Ambiental , Sulfametoxazol/metabolismo , Contaminantes Químicos del Agua/metabolismo , Alcaligenes faecalis/crecimiento & desarrollo , Biotransformación , Cromatografía Líquida de Alta Presión , Espectrometría de Masas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...