Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Tzu Chi Med J ; 35(4): 300-305, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38035058

RESUMEN

The number of patients with dementia grows rapidly as the global population ages, which posits tremendous health-care burden to the society. Only cholinesterase inhibitors and a N-methyl-D-aspartate receptor antagonist have been approved for treating patients with Alzheimer's disease (AD), and their clinical effects remained limited. Medical devices serve as an alternative therapeutic approach to modulating neural activities and enhancing cognitive function. Four major brain stimulation technologies including deep brain stimulation (DBS), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and transcranial ultrasound stimulation (TUS) have been applied to AD in a clinical trial setting. DBS allows electrical stimulation at the specified nucleus but remains resource-demanding, and after all, an invasive surgery; whereas TMS and tDCS are widely available and affordable but less ideal with respect to localization. The unique physical property of TUS, on the other hand, allows both thermal and mechanical energy to be transduced and focused for neuromodulation. In the context of dementia, using focused ultrasound to induce blood-brain barrier opening for delivering drugs and metabolizing amyloid protein has drawn great attention in recent years. Furthermore, low-intensity pulsed ultrasound has demonstrated its neuroprotective effects in both in vitro and in vivo studies, leading to ongoing clinical trials for AD. The potential and limitation of transcranial brain stimulation for treating patients with dementia would be discussed in this review.

2.
PLoS One ; 17(7): e0269818, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35862373

RESUMEN

PURPOSE: We have previously reported that VEGF-B is more potent than VEGF-A in mediating corneal nerve growth in vitro and in vivo, and this stimulation of nerve growth appears to be different from stimulation of angiogenesis by these same ligands, at least in part due to differences in VEGF receptor activation. VEGF signaling may be modulated by a number of factors including receptor number or the formation of receptor hetero- vs. homodimers. In endothelial cells, VEGF receptor heterodimer (VEGR1/R2) activation after ligand binding and subsequent phosphorylation alters the activation of downstream signaling cascades. However, our understanding of these processes in neuronal cell types remains unclear. The purpose of this study was to identify the presence and distribution of VEGF Receptor-Ligand interactions in neuronal cells as compared to endothelial cells. METHODS: PC12 (rat neuronal cell line), MAEC (mouse aortic endothelial cell line), MVEC (mouse venous endothelial cell line) and HUVEC (human umbilical venous endothelial cell line; control group) were used. Cells were acutely stimulated either with VEGF-A (50 ng/µL) or VEGF-B (50 ng/µL) or "vehicle" (PBS; control group). We also isolated mouse trigeminal ganglion cells from thy1-YFP neurofluorescent mice. After treatment, cells were used as follows: (i) One group was fixed in 4% paraformaldehyde and processed for VEGFR1 and VEGFR2 immunostaining and visualized using confocal fluorescence microscopy and Total Internal Reflection (TIRF) microscopy; (ii) the second group was harvested in cell lysis buffer (containing anti-protease / anti-phosphatase cocktail), lysed and processed for immunoprecipitation (IP; Thermo Fisher IP kit) and immunoblotting (IB; LI-COR® Systems). Immunoprecipitated proteins were probed either with anti-VEGFR1 or anti-VEGFR2 IgG antibodies to evaluate VEGFR1-R2-heterodimerization; (iii) a third group of cells was also processed for Duolink Proximity Ligation Assay (PLA; Sigma) to assess the presence and distribution of VEGF-receptor homo- and heterodimers in neuronal and endothelial cells. RESULTS: TIRF and fluorescence confocal microscopy revealed the presence of VEGFR1 co-localized with VEGFR2 in endothelial and PC12 neuronal cells. Cell lysates immunoprecipitated with anti-VEGFR1 further validated the existence of VEGFR1-R2 heterodimers in PC12 neuronal cells. Neuronal cells showed higher levels of VEGFR1-R2 heterodimers as compared to endothelial cells whereas endothelial cells showed higher VEGFR2-R2 homodimers compared to neuronal cells as demonstrated by Duolink PLA. Levels of VEGFR1-R1 homodimers were very low in neuronal and endothelial cells. CONCLUSIONS: Differences in VEGF Receptor homo- and heterodimer distribution may explain the differential role of VEGF ligands in neuronal versus endothelial cell types. This may in turn influence VEGF activity and regulation of neuronal cell homeostasis.


Asunto(s)
Factor A de Crecimiento Endotelial Vascular , Factor B de Crecimiento Endotelial Vascular , Animales , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ligandos , Ratones , Ratas , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
3.
Ocul Surf ; 23: 49-59, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34808360

RESUMEN

PURPOSE: Commensal microbiome secretes various metabolites that can exert important effects on the host immunity and inflammation and can alter cellular functions. However, little is known regarding the effect of microbiome on corneal immunity and genetic expression. The purpose of this study is to describe the effect of diet-induced gut dysbiosis on corneal immunity and corneal gene expression after wounding. METHODS: This study is approved by the Animal Care and Use of the University of Illinois. Six-week-old female C57BL6 mice were fed on a normal chow diet (ND), isocaloric low-fat control diet (LFD), or a 21% milk high-fat diet (HFD) for six weeks. 2 mm corneal epithelial debridement was performed (n = 10). Fecal samples from mice were used for microbial diversity analysis (n > 3). Immunofluorescence staining of corneal wholemount tissue post-debridement was used to visualize immune cell distribution. RNA Seq was performed on tissue samples from corneas following debridement. RESULTS: Mice fed differing diets had significant alterations in gut microbial diversities. After corneal debridement, HFD mice experienced delayed wound healing in comparison to LFD mice and ND mice groups. However, fecal transplantation led to normalization of wound closure rates. Increased γδTCR staining was observed in the LFD group, and decreased LY6G was observed in HFD group (p < 0.05). Gene Ontology terms of differentially expressed genes included response to external stimulus, cell proliferation, migration, adhesion, defense response and leukocyte migration. Top over-represented pathways included ECM-receptor interaction, Cytokine-cytokine receptor interaction, Focal adhesion and Leukocyte trans-endothelial migration. CONCLUSIONS: Gut microbial dysbiosis alters corneal immune cell distribution, corneal response to injury, and genes related to epithelial function and corneal immunity.


Asunto(s)
Lesiones de la Cornea , Dieta Alta en Grasa , Animales , Dieta Alta en Grasa/efectos adversos , Disbiosis , Femenino , Inflamación , Ratones , Ratones Endogámicos C57BL
4.
Acta Biomater ; 134: 177-189, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34400306

RESUMEN

Acellular cornea derived hydrogels provide significant advantages in preserving native corneal stromal keratocyte cells and endothelial cells. However, for clinical application, hydrogel physical properties need to be improved, and their role in corneal epithelial wound healing requires further investigation. In this study, an acellular porcine corneal stroma (APCS) hydrogel (APCS-gel) was successfully prepared from 20 mg/ml APCS, demonstrated optimal light transmittance and gelation kinetic properties and retained critical corneal ECM of collagens and growth factors. Compared with fibrin gel, the APCS-gel had a higher porosity ratio and faster nutrition diffusion with an accompanying improvement in the proliferation of primary rabbit corneal epithelial cells (RCECs) and stromal cells (RCSCs). These corneal cell types also displayed improved viability and cellular infiltration. Furthermore, the APCS-gel provides significant advantages in the preservation of RCECs stemness and enhancement of corneal wound healing in vitro and in vivo. After 7 days of culture, 3-4 layers of RCECs were formed on the APCS-gel in vitro, while only 1-2 layers were found on the fibrin gel. More corneal stem/progenitor cell phenotypes (K12-, p63+, ABCG2+) and proliferation phenotypes (Ki67+) were detected on the APCS-gel than fibrin gel. Using a corneal epithelial wound healing model, we also found faster reepithelization in corneas that received APCS-gel compared to fibrin gel. Additionally, our APCS-gel demonstrated better physical and biological properties when compared to Tisseel, a clinically used type of fibrin gel. In conclusion, our APCS-gel provided better corneal epithelial and stromal cell biocompatibility to fibrin gels and due to its transparency and faster gelation time could potentially be superior for clinical purposes. STATEMENT OF SIGNIFICANCE: Extracellular matrix (ECM) can be used to provide tissue specific physical microstructure and biochemical cues for tissue regeneration. Here, we produced an ECM hydrogel derived from acellular porcine cornea stroma (APCS-gel) that retained critical biological characteristics of the native tissue and provided significant transparency and fast gelation time. Our data demonstrated that the APCS-gel was superior to clinically used fibrin gel, as the APCS-gel showed high porosity and permeability, better corneal stromal keratocytes infiltration, increased cellular proliferation and retention of corneal epithelial cells stemness. The APCS-gel improved corneal wound healing in vitro and in vivo. This APCS-gel may have clinical utility for corneal diseases, and the more general approach used to make this hydrogel might be used in other tissues.


Asunto(s)
Sustancia Propia , Hidrogeles , Animales , Córnea , Células Endoteliales , Hidrogeles/farmacología , Conejos , Porcinos , Cicatrización de Heridas
5.
Sci Rep ; 11(1): 8168, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33854156

RESUMEN

Corneal wound healing depends on extracellular matrix (ECM) and topographical cues that modulate migration and proliferation of regenerating cells. In our study, silk films with either flat or nanotopography patterned parallel ridge widths of 2000, 1000, 800 nm surfaces were combined with ECMs which include collagen type I (collagen I), fibronectin, laminin, and Poly-D-Lysine to accelerate corneal wound healing. Silk films with 800 nm ridge width provided better cell spreading and wound recovery than other size topographies. Coating 800 nm patterned silk films with collagen I proves to optimally further increased mouse and rabbit corneal epithelial cells growth and wound recovery. This enhanced cellular response correlated with redistribution and increase in size and total amount of focal adhesion. Transcriptomics and signaling pathway analysis suggested that silk topography regulates cell behaviors via actin nucleation ARP-WASP complex pathway, which regulate filopodia formation. This mechanism was further explored and inhibition of Cdc42, a key protein in this pathway, delayed wound healing and decreased the length, density, and alignment of filopodia. Inhibition of Cdc42 in vivo resulted in delayed re-epithelization of injured corneas. We conclude that silk film nanotopography in combination with collagen I constitutes a better substrate for corneal wound repair than either nanotopography or ECM alone.


Asunto(s)
Colágeno Tipo I/farmacología , Epitelio Corneal/lesiones , Seda/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Epitelio Corneal/efectos de los fármacos , Epitelio Corneal/metabolismo , Matriz Extracelular/metabolismo , Adhesiones Focales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Nanopartículas , Cultivo Primario de Células , Pirazoles/efectos adversos , Conejos , Sulfonamidas/efectos adversos , Propiedades de Superficie
6.
PLoS One ; 13(1): e0191962, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29370308

RESUMEN

The peripheral sensory nerves that innervate the cornea can be easily damaged by trauma, surgery, infection or diabetes. Several growth factors and axon guidance molecules, such as Semaphorin3A (Sema3A) are upregulated upon cornea injury. Nerves can regenerate after injury but do not recover their original density and patterning. Sema3A is a well known axon guidance and growth cone repellent protein during development, however its role in adult cornea nerve regeneration remains undetermined. Here we investigated the neuro-regenerative potential of Sema3A on adult peripheral nervous system neurons such as those that innervate the cornea. First, we examined the gene expression profile of the Semaphorin class 3 family members and found that all are expressed in the cornea. However, upon cornea injury there is a fast increase in Sema3A expression. We then corroborated that Sema3A totally abolished the growth promoting effect of nerve growth factor (NGF) on embryonic neurons and observed signs of growth cone collapse and axonal retraction after 30 min of Sema3A addition. However, in adult isolated trigeminal ganglia or dorsal root ganglia neurons, Sema3A did not inhibited the NGF-induced neuronal growth. Furthermore, adult neurons treated with Sema3A alone produced similar neuronal growth to cells treated with NGF and the length of the neurites and branching was comparable between both treatments. These effects were replicated in vivo, where thy1-YFP neurofluorescent mice subjected to cornea epithelium debridement and receiving intrastromal pellet implantation containing Sema3A showed increased corneal nerve regeneration than those receiving pellets with vehicle. In adult PNS neurons, Sema3A is a potent inducer of neuronal growth in vitro and cornea nerve regeneration in vivo. Our data indicates a functional switch for the role of Sema3A in PNS neurons where the well-described repulsive role during development changes to a growth promoting effect during adulthood. The high expression of Sema3A in the normal and injured adult corneas could be related to its role as a growth factor.


Asunto(s)
Regeneración Nerviosa/efectos de los fármacos , Semaforina-3A/farmacología , Animales , Epitelio Corneal/efectos de los fármacos , Epitelio Corneal/lesiones , Epitelio Corneal/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Conos de Crecimiento/efectos de los fármacos , Ratones , Nervio Trigémino/citología , Nervio Trigémino/efectos de los fármacos
7.
Invest Ophthalmol Vis Sci ; 58(14): 6388-6398, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29260198

RESUMEN

Purpose: Corneal basement membrane has topographical features that provide biophysical cues to direct cell adherence, migration, and proliferation. In this study, we hypothesize that varying topographic pitch created on silk films can alter epithelial cell morphology, adhesion, and the genetic expression involved in cytoskeletal dynamics-related pathways. Methods: Silicon wafers with parallel ridge widths of 2000, 1000, and 800 nm were produced and used to pattern silk films via soft lithography. Human corneal epithelial cells were cultured onto silk. After 72 hours of incubation, images were taken to study cell morphology and alignment. Cytoskeletal structures were studied by immunofluorescent staining. RNA was collected from cultured cells to perform RNA-Seq transcriptome analysis using the Illumina Hiseq 2500 sequencing system. Differentially expressed genes were identified using DNAstar Qseq then verified using quantitative real-time PCR. These genes were used to perform pathway analyses using Ingenuity Pathways Analysis. Results: Primary human corneal epithelial cell alignment to the surface pattern was the greatest on 1000-nm features. Fluorescent microscopy of f-actin staining showed cell cytoskeleton alignment either in parallel (2000 nm) or perpendicular (1000 and 800 nm) to the long feature axis. Z-stack projection of vinculin staining indicated increased focal adhesion formation localized on the cellular basal surface. RNA-seq analysis revealed differentially expressed genes involved in actin organization, integrin signaling, and focal adhesion kinase signaling (-log (P)>5). Conclusions: Patterned silk film substrates may serve as a scaffold and provide biophysical cues to corneal epithelial cells that change their gene expression, alter cellular adherence, morphology, and may offer a promising customizable material for use in ocular surface repair.


Asunto(s)
Células Epiteliales/citología , Epitelio Corneal/citología , Regulación de la Expresión Génica/efectos de los fármacos , Seda/farmacología , Ingeniería de Tejidos/métodos , Adhesión Celular/efectos de los fármacos , Células Cultivadas , Citoesqueleto/efectos de los fármacos , Células Epiteliales/ultraestructura , Perfilación de la Expresión Génica , Humanos , Andamios del Tejido
8.
Nat Commun ; 7: 10412, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26786190

RESUMEN

Chloride intracellular channel 4 (CLIC4) is a mammalian homologue of EXC-4 whose mutation is associated with cystic excretory canals in nematodes. Here we show that CLIC4-null mouse embryos exhibit impaired renal tubulogenesis. In both developing and developed kidneys, CLIC4 is specifically enriched in the proximal tubule epithelial cells, in which CLIC4 is important for luminal delivery, microvillus morphogenesis, and endolysosomal biogenesis. Adult CLIC4-null proximal tubules display aberrant dilation. In MDCK 3D cultures, CLIC4 is expressed on early endosome, recycling endosome and apical transport carriers before reaching its steady-state apical membrane localization in mature lumen. CLIC4 suppression causes impaired apical vesicle coalescence and central lumen formation, a phenotype that can be rescued by Rab8 and Cdc42. Furthermore, we show that retromer- and branched actin-mediated trafficking on early endosome regulates apical delivery during early luminogenesis. CLIC4 selectively modulates retromer-mediated apical transport by negatively regulating the formation of branched actin on early endosomes.


Asunto(s)
Actinas/metabolismo , Canales de Cloruro/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Canales de Cloruro/genética , Perros , Endosomas/metabolismo , Exocitosis/genética , Exocitosis/fisiología , Inmunoprecipitación , Células de Riñón Canino Madin Darby , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología
9.
PLoS One ; 4(10): e7330, 2009 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-19802394

RESUMEN

Navigation of cell locomotion by gradients of soluble factors can be desensitized if the concentration of the chemo-attractant stays unchanged. It remains obscure if the guidance by immobilized extracellular matrix (ECM) as the substrate is also adaptive and if so, how can the desensitized ECM guidance be resensitized. When first interacting with a substrate containing micron-scale fibronectin (FBN) trails, highly motile fish keratocytes selectively adhere and migrate along the FBN paths. However, such guided motion become adaptive after about 10 min and the cells start to migrate out of the ECM trails. We found that a burst increase of intracellular calcium created by an uncaging technique immediately halts the undirected migration by disrupting the ECM-cytoskeleton coupling, as evidenced by the appearance of retrograde F-actin flow. When the motility later resumes, the activated integrin receptors render the cell selectively binding to the FBN path and reinitiates signaling events, including tyrosine phosphorylation of paxillin, that couple retrograde F-actin flow to the substrate. Thus, the calcium-resensitized cell can undergo a period of ECM-navigated movement, which later becomes desensitized. Our results also suggest that endogenous calcium transients as occur during spontaneous calcium oscillations may exert a cycling resensitization-desensitization control over cell's sensing of substrate guiding cues.


Asunto(s)
Calcio/metabolismo , Matriz Extracelular/metabolismo , Animales , Movimiento Celular , Células Cultivadas/citología , Carpa Dorada , Queratinocitos/metabolismo , Microscopía Fluorescente/métodos , Microscopía de Interferencia/métodos , Modelos Biológicos , Fosforilación , Transducción de Señal
10.
Exp Cell Res ; 313(1): 53-64, 2007 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17069797

RESUMEN

To deliver non-permeable molecules into cells, one can utilize protocols such as microinjection, electroporation, liposome-mediated transfection or virus-mediated transfection. However, each method has its own limitations. Here we have developed a new molecular delivery technique where live cells or tissues are bombarded with highly accelerated molecules directly and without the need to conjugate the molecules onto carrier particles, which is essential in conventional "gene gun" experiments. Gene bombardments can be applied to well-differentiated cells, primary cultured cells/neurons or tissue explants, all of which are notoriously difficult to transfect. Exogenously made proteins and even bacteria can be effectively introduced into cells where they can execute their function or replicate. Our experimental results and physical model support the notion that accelerated chemicals, proteins, or microorganisms carry enough momentum to penetrate the plasma membrane. The bombardment process is associated with a transient (approximately 10 min) increase in cell permeability, but such membrane leakage has a minimal adverse effect on cell survival.


Asunto(s)
Bacterias , Biolística/métodos , Sistemas de Liberación de Medicamentos/métodos , Animales , Técnicas Bacteriológicas , Células CHO , Línea Celular , Permeabilidad de la Membrana Celular , Cricetinae , Cricetulus , Proteínas del Citoesqueleto/administración & dosificación , Proteínas del Citoesqueleto/química , ADN Recombinante/administración & dosificación , ADN Recombinante/genética , Escherichia coli , Células HeLa , Humanos , Modelos Biológicos , Peso Molecular , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/química , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA