Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 36(36)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38565125

RESUMEN

Magnonicsis a research field that has gained an increasing interest in both the fundamental and applied sciences in recent years. This field aims to explore and functionalize collective spin excitations in magnetically ordered materials for modern information technologies, sensing applications and advanced computational schemes. Spin waves, also known as magnons, carry spin angular momenta that allow for the transmission, storage and processing of information without moving charges. In integrated circuits, magnons enable on-chip data processing at ultrahigh frequencies without the Joule heating, which currently limits clock frequencies in conventional data processors to a few GHz. Recent developments in the field indicate that functional magnonic building blocks for in-memory computation, neural networks and Ising machines are within reach. At the same time, the miniaturization of magnonic circuits advances continuously as the synergy of materials science, electrical engineering and nanotechnology allows for novel on-chip excitation and detection schemes. Such circuits can already enable magnon wavelengths of 50 nm at microwave frequencies in a 5G frequency band. Research into non-charge-based technologies is urgently needed in view of the rapid growth of machine learning and artificial intelligence applications, which consume substantial energy when implemented on conventional data processing units. In its first part, the 2024 Magnonics Roadmap provides an update on the recent developments and achievements in the field of nano-magnonics while defining its future avenues and challenges. In its second part, the Roadmap addresses the rapidly growing research endeavors on hybrid structures and magnonics-enabled quantum engineering. We anticipate that these directions will continue to attract researchers to the field and, in addition to showcasing intriguing science, will enable unprecedented functionalities that enhance the efficiency of alternative information technologies and computational schemes.

2.
Adv Mater ; 36(13): e2305739, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37800466

RESUMEN

Magnetic van der Waals heterostructures provide a unique platform to study magnetism and spintronics device concepts in the 2D limit. Here, studies of exchange bias from the van der Waals antiferromagnet CrSBr acting on the van der Waals ferromagnet Fe3GeTe2 (FGT) are reported. The orientation of the exchange bias is along the in-plane easy axis of CrSBr, perpendicular to the out-of-plane anisotropy of the FGT, inducing a strongly tilted magnetic configuration in the FGT. Furthermore, the in-plane exchange bias provides sufficient symmetry breaking to allow deterministic spin-orbit torque switching of the FGT in CrSBr/FGT/Pt samples at zero applied magnetic field. A minimum thickness of the CrSBr of >10 nm is needed to provide a non-zero exchange bias at 30 K.

3.
Sci Adv ; 9(36): eadi9039, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37682997

RESUMEN

Sagnac interferometry can provide a substantial improvement in signal-to-noise ratio compared to conventional magnetic imaging based on the magneto-optical Kerr effect. We show that this improvement is sufficient to allow quantitative measurements of current-induced magnetic deflections due to spin-orbit torque even in thin-film magnetic samples with perpendicular magnetic anisotropy, for which the Kerr rotation is second order in the magnetic deflection. Sagnac interferometry can also be applied beneficially for samples with in-plane anisotropy, for which the Kerr rotation is first order in the deflection angle. Optical measurements based on Sagnac interferometry can therefore provide a cross-check on electrical techniques for measuring spin-orbit torque. Different electrical techniques commonly give quantitatively inconsistent results so that Sagnac interferometry can help to identify which techniques are affected by unidentified artifacts.

4.
Nano Lett ; 22(16): 6716-6723, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35925774

RESUMEN

We report measurements of antiferromagnetic resonances in the van der Waals easy-axis antiferromagnet CrSBr. The interlayer exchange field and magnetocrystalline anisotropy fields are comparable to laboratory magnetic fields, allowing a rich variety of gigahertz-frequency dynamical modes to be accessed. By mapping the resonance frequencies as a function of the magnitude and angle of applied magnetic field, we identify the different regimes of antiferromagnetic dynamics. The spectra show good agreement with a Landau-Lifshitz model for two antiferromagnetically coupled sublattices, accounting for interlayer exchange and triaxial magnetic anisotropy. Fits allow us to quantify the parameters governing the magnetic dynamics: At 5 K, the interlayer exchange field is µ0HE = 0.395(2) T, and the hard and intermediate-axis anisotropy parameters are µ0Hc = 1.30(2) T and µ0Ha = 0.383(7) T. The existence of within-plane anisotropy makes it possible to control the degree of hybridization between the antiferromagnetic resonances using an in-plane magnetic field.

5.
Phys Rev Lett ; 121(12): 127703, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30296144

RESUMEN

We report the discovery of a strong and tunable spin-lifetime anisotropy with excellent out-of-plane spin lifetimes up to 7.8 ns at 100 K in dual-gated bilayer graphene. Remarkably, this realizes the manipulation of spins in graphene by electrically controlled spin-orbit fields, which is unexpected due to graphene's weak intrinsic spin-orbit coupling (∼12 µeV). We utilize both the in-plane magnetic field Hanle precession and oblique Hanle precession measurements to directly compare the lifetimes of out-of-plane vs in-plane spins. We find that near the charge neutrality point, the application of a perpendicular electric field opens a band gap and generates an out-of-plane spin-orbit field that stabilizes out-of-plane spins against spin relaxation, leading to a large spin-lifetime anisotropy (defined as the ratio between out-of-plane and in-plane spin lifetime) up to ∼12 at 100 K. This intriguing behavior occurs because of the unique spin-valley coupled band structure of bilayer graphene. Our results demonstrate the potential for highly tunable spintronic devices based on dual-gated 2D materials.

6.
Nano Lett ; 18(5): 3125-3131, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29608316

RESUMEN

Monolayer van der Waals (vdW) magnets provide an exciting opportunity for exploring two-dimensional (2D) magnetism for scientific and technological advances, but the intrinsic ferromagnetism has only been observed at low temperatures. Here, we report the observation of room temperature ferromagnetism in manganese selenide (MnSe x) films grown by molecular beam epitaxy (MBE). Magnetic and structural characterization provides strong evidence that, in the monolayer limit, the ferromagnetism originates from a vdW manganese diselenide (MnSe2) monolayer, while for thicker films it could originate from a combination of vdW MnSe2 and/or interfacial magnetism of α-MnSe(111). Magnetization measurements of monolayer MnSe x films on GaSe and SnSe2 epilayers show ferromagnetic ordering with a large saturation magnetization of ∼4 Bohr magnetons per Mn, which is consistent with the density functional theory calculations predicting ferromagnetism in monolayer 1T-MnSe2. Growing MnSe x films on GaSe up to a high thickness (∼40 nm) produces α-MnSe(111) and an enhanced magnetic moment (∼2×) compared to the monolayer MnSe x samples. Detailed structural characterization by scanning transmission electron microscopy (STEM), scanning tunneling microscopy (STM), and reflection high energy electron diffraction (RHEED) reveals an abrupt and clean interface between GaSe(0001) and α-MnSe(111). In particular, the structure measured by STEM is consistent with the presence of a MnSe2 monolayer at the interface. These results hold promise for potential applications in energy efficient information storage and processing.

7.
Nano Lett ; 17(6): 3877-3883, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28534400

RESUMEN

Two-dimensional (2D) materials provide a unique platform for spintronics and valleytronics due to the ability to combine vastly different functionalities into one vertically stacked heterostructure, where the strengths of each of the constituent materials can compensate for the weaknesses of the others. Graphene has been demonstrated to be an exceptional material for spin transport at room temperature; however, it lacks a coupling of the spin and optical degrees of freedom. In contrast, spin/valley polarization can be efficiently generated in monolayer transition metal dichalcogenides (TMD) such as MoS2 via absorption of circularly polarized photons, but lateral spin or valley transport has not been realized at room temperature. In this Letter, we fabricate monolayer MoS2/few-layer graphene hybrid spin valves and demonstrate, for the first time, the opto-valleytronic spin injection across a TMD/graphene interface. We observe that the magnitude and direction of spin polarization is controlled by both helicity and photon energy. In addition, Hanle spin precession measurements confirm optical spin injection, spin transport, and electrical detection up to room temperature. Finally, analysis by a one-dimensional drift-diffusion model quantifies the optically injected spin current and the spin transport parameters. Our results demonstrate a 2D spintronic/valleytronic system that achieves optical spin injection and lateral spin transport at room temperature in a single device, which paves the way for multifunctional 2D spintronic devices for memory and logic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...