Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int Immunopharmacol ; 129: 111538, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38306830

RESUMEN

CCl4-induced acute liver injury (ALI) is characterized by heightened autophagy, inflammation, and oxidative damage. Accumulating evidence suggests that harmine exerts beneficial effects in countering CCl4-induced ALI by mitigating inflammation and oxidative stress. However, the impact of autophagy on CCl4-induced ALI and the protective role of harmine remain unclear. This study aimed to investigate the potential protective effects of harmine against CCl4-induced ALI in mice by suppressing autophagy and inflammation. Male Kunming mice were orally administered harmine or bifendate for seven days. Subsequently, one hour after the final administration, the model group and treatment groups were intraperitoneally injected with CCl4 to induce ALI. The findings revealed that harmine significantly reduced the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum, and ameliorated the liver histopathological changes induced by CCl4. Furthermore, harmine diminished the levels of TNF-α and IL-6, restored the levels of glutathione (GSH) and superoxide dismutase (SOD), and suppressed the production of nitric oxide (NO) and malondialdehyde (MDA) in the liver. Mechanistically, harmine down-regulated LC3B II/I, p38 MAPK, TLR4, and NF-κB levels, while upregulating p62, Bcl-2, Beclin1, ULK1, and p-mTOR expression. In conclusion, harmine mitigated CCl4-induced ALI by inhibiting autophagy and inflammation through the p38 MAPK/mTOR autophagy pathway, the Bcl-2/Beclin1 pathway, and the TLR4/NF-κB pathway.


Asunto(s)
Harmina , FN-kappa B , Ratones , Masculino , Animales , FN-kappa B/metabolismo , Harmina/farmacología , Harmina/uso terapéutico , Receptor Toll-Like 4/metabolismo , Beclina-1/metabolismo , Hígado/patología , Inflamación/metabolismo , Glutatión/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Autofagia , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
2.
Arch Biochem Biophys ; 752: 109873, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38141907

RESUMEN

Severe acute pancreatitis (SAP) is an inflammatory disease of the pancreas with a high mortality rate. Macrophages play a crucial role in the pathogenesis of pancreatitis. Tectoridin (Tec) is a highly active isoflavone with anti-inflammatory pharmacological activity. However, the role of Tec in the SAP process is not known. The purpose of this study was to investigate the therapeutic effect and potential mechanism of Tec on SAP. To establish SAP mice by intraperitoneal injection of caerulein and Lipopolysaccharide (LPS), the role of Tec in the course of SAP was investigated based on histopathology, biochemical indicators of amylase and lipase and inflammatory factors. The relationship between Tec and macrophage polarization was verified by immunofluorescence, real-time quantitative PCR and Western blot analysis. We then further predicted the possible targets and signal pathways of action of Tec by network pharmacology and molecular docking, and validated them by in vivo and in vitro. In this study, we demonstrated that Tec significantly reduced pancreatic injury in SAP mice, and decreased serum levels of amylase and lipase. The immunofluorescence and Western blot analysis showed that Tec promoted macrophage M2 polarization. Network pharmacology and molecular docking predicted that Tec may target ERK2 for the treatment of SAP, and in vivo and in vitro experiments proved that Tec inhibited the ERK MAPK signal pathway. In summary, Tec can target ERK2, promote macrophage M2 polarization and attenuate pancreatic injury, Tec may be a potential drug for the treatment of SAP.


Asunto(s)
Isoflavonas , Pancreatitis , Ratones , Animales , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Pancreatitis/metabolismo , Ceruletida/efectos adversos , Enfermedad Aguda , Simulación del Acoplamiento Molecular , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Macrófagos/metabolismo , Amilasas , Lipasa
3.
Front Plant Sci ; 14: 1112382, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37351215

RESUMEN

Continuous monoculture of crops has resulted in reduced yields and quality, as well as soil deterioration. Although traditional Chinese medicine residues (TCMRs) are known to promote plant growth and soil health, few studies have investigated their effectiveness in continuous monoculture soils. Here, we studied the impact of chemical fertilizers (CF) and four TCMRs with antibacterial activities on the growth of S. miltiorrhiza (a widely used medicinal plant in China), accumulation of active ingredients in plants, and soil health under continuous monoculture conditions. Compared with no fertilizer (CK) and CF, fermented Sophora flavescens radix residue (SFRf) and fermented and unfermented Moutan cortex residue (MCRf and MCRu, respectively) resulted in a reduction of the disease index of root rot, while CF did not. The CF and four TCMR treatments increased the accumulation of nitrogen (N) (42.8-124.6% and 17.0-101.7%), phosphorous (P) (19.8-74.7% and 8.3-27.4%), and potassium (K) (104.1-212.0% and 9.3-51.8%) in shoots and roots compared to CK. The differences in nutrient accumulation between the CF and TCMR treatments were statistically insignificant, excepted for the N accumulation in the roots. All fertilization treatments increased plant biomass compared to CK, with increases of 25.57-89.86% and 2.62-35.28% in shoots and roots, respectively. The SFRf treatment exhibited the most significant enhancement in both shoot and root biomass. CF significantly reduced the accumulation of seven active ingredients in roots by 23.90-78.95% compared to CK, whereas each TCMR increased accumulation of certain active ingredients. The TCMR treatments effectively improved the health of deteriorated soil by enhancing soil physicochemical properties, restoring the balance of the microbial community, recruiting beneficial bacteria, and reducing the relative abundance of the pathogen Fusarium. The SFRf treatment exhibited superior performance in improving soil health than other treatments. Overall, the TCMRs outperformed CF in restoring soil health and promoting the yield and quality of S. miltiorrhiza. These findings offer guidance for improving the health of continuous cropping soil and recycling TCMRs.

4.
Zhongguo Zhong Yao Za Zhi ; 48(1): 39-44, 2023 Jan.
Artículo en Chino | MEDLINE | ID: mdl-36725256

RESUMEN

Wilt disease is a major disease of cultivated Salvia miltiorrhiza, which is caused by Fusarium oxysporum. Since the infection process of F. oxysporum in plants is affected by environment factors, this study was conducted to reveal the relationship between disease severity and concentration of the pathogen in plants in the infection process of F. oxysporum in seedlings of S. miltiorrhiza by pot experiments and to reveal the effects of temperature and humidity on the infection process. The results showed that, after inoculation of S. miltiorrhiza seedlings with F. oxysporum, the pathogen in different parts was detected at different time, and it was first detected in substrates. With the continuous propagation of the pathogen(4-5 d), it gradually infected the roots and stems of the seedlings, and the plants had yellowing leaves and withering. The number of the pathogen reached the maximum in each part after 7-8 d, and then gradually decreased in the later stage of the disease. The concentration of the pathogen in substrates, roots and stems of S. miltiorrhiza showed a trend of decreasing after increasing with the aggravation of the disease and reached the maximum in the samples of moderate morbidity, while the concentration in the samples of severe morbidity decreased. In addition, the infection of F. oxysporum in seedlings of S. miltiorrhiza was affected by temperature and humidity. The suitable temperature was 25-30 ℃ and the suitable humidity was 80%-90%. This study could provide guidance for the experiments on pathogenicity of F. oxysporum, screening of biocontrol bacteria and controlling of wilt.


Asunto(s)
Fusarium , Salvia miltiorrhiza , Plantones/microbiología , Temperatura , Humedad
5.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5832-5837, 2022 Nov.
Artículo en Chino | MEDLINE | ID: mdl-36472001

RESUMEN

Salvia miltiorrhiza is a commonly used bulk medicinal material in China. Due to the increasing demand in recent years, the planting area is expanding. In the artificial cultivation of S. miltiorrhiza, continuous cropping obstacles are prominent, which has seriously restrained the growth of S. miltiorrhiza, resulted in serious root diseases, and affected the yield and quality of medicinal materials. The pathogen infection can induce plant resistance. Previously, this research group isolated Fusarium oxysporum and Verticillium dahlia from the roots of diseased S. miltiorrhiza. In this study, 7 days after inoculation of S. miltiorrhiza with F. oxysporum(Foc group) and V. dahlia(Vd group), the incidence rates in S. miltiorrhiza were 48% and 26%, respectively. Both the two pathogens significantly reduced the aboveground biomass of S. miltiorrhiza. Five days after inoculation, the activities of defensive enzymes, such as peroxidase(POD), phenylalanine ammonia-lyase(PAL), superoxide dismutase(SOD), and polyphenol oxidase(PPO) reached the peak. The enzyme activity of the Foc group was significantly higher than that of the Vd group. Three days after inoculation, the expression of defense genes SmPDF2.1 and SmPR10 peaked and then decreased. The results showed that F. oxysporum and V. dahlia showed pathogenicity to S. miltiorrhiza and could strongly induce systemic resistance. In terms of the above indexes, F. oxysporum was superior to V. dahlia.


Asunto(s)
Dahlia , Fusarium , Salvia miltiorrhiza , Verticillium , Virulencia
6.
Zhongguo Zhong Yao Za Zhi ; 47(23): 6365-6372, 2022 Dec.
Artículo en Chino | MEDLINE | ID: mdl-36604881

RESUMEN

Ubiquitin/26 S proteasome system(UPS) is one of the main ways to regulate the degradation of proteins in plants, and plays an important role in physiological processes such as secondary metabolism and plant hormone signal transduction. As indicated recently, UPS is involved in plant-microbe interactions, and presumably regulates arbuscular mycorrhizal symbiosis to affect its effects. This study investigated the effects of interaction between Cbz-leu-leu-leucinal(MG132) and the mycorrhiza on the growth and effective components of Salvia miltiorrhiza by inoculation with Glomus intraradices and spraying MG132 solution. The results showed that the inoculation with G. intraradices could promote the growth of S. miltiorrhiza, increase the accumulation of effective components in the aerial and underground parts, and decrease the relative expression level of JMT. Additionally, MG132 could strengthen the growth-promoting effect of G. intraradices. As compared with the control group, the inoculation with G. intraradices could significantly increase aerial and underground fresh weights by 267% and 95%, respectively, under the treatment with MG132 spraying, while under the MG132 spraying-free condition, the increase was 195% and 32%, respectively. Meanwhile, MG132 spraying could enhance the promotion of mycorrhizal fungi on the accumulation of active components of S. miltiorrhiza. On the other hand, regardless of inoculation with G. intraradices or not, MG132 treatment could promote the root division of S. miltiorrhiza, reduce the content of effective components in the aerial parts, and increase the content in the underground part. The inoculation with G. intraradices could alleviate the inhibitory effect of MG132 on the accumulation of effective components in the aerial part of S. miltiorrhiza. The results show that arbuscular mycorrhizal fungi(AMF) can promote the growth of S. miltiorrhiza and the accumulation of effective components, and MG132 treatment can strengthen such promotion effect, which lays a foundation for the application of MG132 in the mycorrhizal cultivation of S. miltiorrhiza in the future.


Asunto(s)
Micorrizas , Salvia miltiorrhiza , Micorrizas/fisiología , Inhibidores de Proteasoma/metabolismo , Ubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Raíces de Plantas , Simbiosis/fisiología
7.
Front Psychol ; 12: 657573, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34113291

RESUMEN

This study examines the relative contribution of vocabulary breadth (VB) and vocabulary depth (VD) to three different listening comprehension measures. One hundred and thirteen English majors were given VB and VD tests, and three listening comprehension tests. Based on three pairs of hierarchical multiple regression analyses, we found that the relative contribution of VB and VD varied across the three listening comprehension tests. Specifically, for the listening test with an expository text dictation to assess integrative skills, both VB and VD made a unique positive contribution to comprehension, but this was greater in the case of depth. For the listening test involving narrative conversations to assess literal comprehension, neither VB nor VD (after controlling for each other) could independently predict comprehension, whereas for the listening test that comprises expository passages to assess inferential comprehension, VD could separately predict comprehension but VB could not. These findings suggest that the relative contribution of VD and VB to listening comprehension may depend on how a listening test is constructed. Therefore, the findings will contribute to listening comprehension and vocabulary knowledge research, and vocabulary teaching and learning.

8.
Zhongguo Zhong Yao Za Zhi ; 46(6): 1368-1373, 2021 Mar.
Artículo en Chino | MEDLINE | ID: mdl-33787133

RESUMEN

Arbuscular mycorrhizal fungi provided is beneficial to Salvia miltiorrhiza for increasing yield, promoting the accumulation of active ingredients, and alleviating S. miltiorrhiza disease etc. However, the application of fungicides will affect the benefit of arbuscular mycorrhizal fungi and there is little research about it. This article study the effect of four different fungicides: carbendazim, polyoxin, methyl mopazine, and mancozeb on mycorrhiza benefit to S. miltiorrhiza by the infection intensity of arbuscular mycorrhizal fungi, the growth of S. miltiorrhiza, and the content of active ingredients. RESULTS:: showed that different fungicides had different effects. The application of mancozeb had the strongest inhibitory effect on the mycorrhizal benefit to S. miltiorrhiza. Mancozeb significantly reduced the mycorrhizal colonization and the beneficial effect of arbuscular mycorrhizal fungi on the growth and the accumulation of active components of S. miltiorrhiza. The application of polyoxin had no significant effect on mycorrhizal colonization. Instead, it had a synergistic effect with the mycorrhizal benefit to promoting the growth and accumulation of rosmarinic acid of S. miltiorrhiza. The inhibitory strengths of four fungicides are: mancozeb>thiophanate methyl, carbendazim>polyoxin. Therefore, we recommend applying biological fungicides polyoxin and avoid applying chemical fungicides mancozeb for disease control during mycorrhizal cultivation of S. miltiorrhiza.


Asunto(s)
Fungicidas Industriales , Micorrizas , Salvia miltiorrhiza , Fungicidas Industriales/farmacología , Raíces de Plantas , Simbiosis
9.
Front Neurosci ; 12: 461, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30050401

RESUMEN

Social network size is a key feature when we explore the constructions of human social networks. Despite the disparate understanding of individuals' social networks, researchers have reached a consensus that human's social networks are hierarchically organized with different layers, which represent emotional bonds and interaction frequency. Social brain hypothesis emphasizes the significance of complex and demanding social interaction environments and assumes that the cognitive constraints may have an impact on the social network size. This paper reviews neuroimaging studies on social networks that explored the connection between individuals' social network size and neural mechanisms and finds that Social Network Index (SNI) and Social Network Questionnaires (SNQs) are the mostly-adopted measurements of one's social network size. The two assessments have subtle difference in essence as they measure the different sublayers of one's social network. The former measures the relatively outer sub-layer of one's stable social relationship, similar to the sympathy group, while the latter assesses the innermost layer-the core of one's social network, often referred to as support clique. This subtle difference is also corroborated by neuroimaging studies, as SNI-measured social network size is largely correlated with the amygdala, while SNQ-assessed social network size is closely related to both the amygdala and the orbitofrontal cortex. The two brain regions respond to disparate degrees of social closeness, respectively. Finally, it proposes a careful choice among the measurements for specific purposes and some new approaches to assess individuals' social network size.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA