RESUMEN
Two undescribed 3,5-dimethylorsellinic acid (DMOA) derived meroterpenoids, namely pancosterpenoids A (1) and B (2), were discovered from the EtOAc extract of the deep-sea sediment-derived fungus Penicillium pancosmium A6A. The gross structures were established by detailed analysis of the spectroscopic data (NMR and HRESIMS spectra), while their absolute configurations were resolved by comparing the experimental and calculated ECD data as well as X-ray single crystal diffraction analysis. Pancosterpenoid A (1) was the first representative of DMOA-derived meroterpenoids possessing a 6/6/6/5/5 pentacyclic system, while pancosterpenoid B (2) belongs to a class of rare 13-nor-citreohybridone meroterpenoids. Two metabolites were evaluated the antiviral effects against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) trVLP pseudovirus. As a result, compounds 1 and 2 showed moderately inhibitory activities with IC50 values of 22.37 and 18.12 µM, respectively.
RESUMEN
Ten new ergone derivatives (1-10) and five known analogues (11-15) were isolated from the deep-sea-derived fungus Aspergillus terreus YPGA10. The structures including the absolute configurations were established by detailed analysis of the NMR spectroscopic data, HRESIMS, ECD calculation, and coupling constant calculation. All the structures are characterized by a highly conjugated 25-hydroxyergosta-4,6,8(14),22-tetraen-3-one nucleus. Structurally, compound 2 bearing a 15-carbonyl group and compounds 5-7 possessing a 15ß-OH/OCH3 group are rarely encountered in ergone derivatives. Bioassay results showed that compounds 1 and 11 demonstrated cytotoxic effects on human colon cancer SW620 cells with IC50 values of 8.4 and 3.1 µM, respectively. Notably, both compounds exhibited negligible cytotoxicity on the human normal lung epithelial cell BEAS-2B. Compound 11 was selected for preliminary mechanistic study and was found to inhibit cell proliferation and induce apoptosis in human colon cancer SW620 cells. In addition, compound 1 displayed cytotoxic activity against five human leukemia cell lines with IC50 values ranging from 5.7 to 8.9 µM. Our study demonstrated that compound 11 may serve as a potential candidate for the development of anticolorectal cancer agents.
Asunto(s)
Apoptosis , Aspergillus , Neoplasias del Colon , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Aspergillus/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Ensayos de Selección de Medicamentos Antitumorales , Estructura MolecularRESUMEN
This study aims to address the suboptimal performance of conventional denitrifying strains in treating mariculture tail water (MTW) containing inorganic nitrogen (IN). The concentration of inorganic nitrogen in the mariculture tail water is about 5-20 mg·L-1. A biofilm treatment process was developed and evaluated using an anoxic-anoxic-aerobic biofilter composite system inoculated with the denitrifying strain Meyerozyma guilliermondii Y8. The removal effect of total nitrogen (TN), IN, and Chemical Oxygen Demand (CODMn) from MTW was investigated. The results indicate that the A2O composite biological filter has excellent pollutant removal efficiency within 25 days of operation, after the acclimation of the denitrifying microorganisms. The initial concentrations of TN, IN, and CODMn ranged between 10.24 and 12.89 mg·L-1, 7.84-10.49 mg·L-1, and 9.44-11.52 mg·L-1, respectively, and the removal rates of these indexes reached 38-68 %, 45-70 %, and 55-70 %, respectively. The experiments with different hydraulic retention times (HRT = 6 h, 8 h, 10 h) demonstrated that longer HRT was more conducive to the removal of inorganic nitrogen. Moreover, scanning electron microscopy observations revealed that the target strain successfully grew and attached to the filler in large quantities. The findings of this study provide practical guidance for the development of efficient biofilm processes for the treatment of MTW.
Asunto(s)
Nitrógeno , Contaminantes Químicos del Agua , Anaerobiosis , Biopelículas , Eliminación de Residuos Líquidos/métodos , Desnitrificación , Análisis de la Demanda Biológica de Oxígeno , Acuicultura , Biodegradación Ambiental , Purificación del Agua/métodosRESUMEN
Hortaea werneckii M-3, a black yeast isolated from the marine sediment of the West Pacific, can utilize polyester polyurethane (PU, Impranil DLN) as a sole carbon source. Here, we present the complete genome of Hortaea werneckii M-3 with the focus on PU degradation enzymes. The total genome size is 38,167,921 bp, consisting of 186 contigs with a N50 length of 651,266 bp and a GC content of 53.06%. Genome annotation analysis predicts a total of 13,462 coding genes, which include 99 tRNAs and 105 rRNAs. Some genes encoding PU degrading enzymes including cutinase and urease are identified in this genome. The genome analysis of Hortaea werneckii M-3 will be helpful for further understanding the degradation mechanism of polyester PU by marine yeasts.
Asunto(s)
Genoma Fúngico , Poliuretanos , Secuenciación Completa del Genoma , Saccharomycetales/genética , Poliésteres/metabolismo , Sedimentos Geológicos/microbiologíaRESUMEN
Two new phenylspirodrimanes, stachybotrins K and L (1 and 2), together with eight known analogues (3-10), were isolated from deep-sea-derived Stachybotrys sp. MCCC 3A00409. Their structures were determined by extensive NMR data and mass spectroscopic analysis. Absolute configurations of new compounds were determined through a comparison of their circular dichroism (CD) spectra with other reported compounds. The possible reversal effects of all compounds were assayed in the resistant cancer cell lines. Stachybotrysin B (8) can reverse multidrug resistance (MDR) in ABCB1-overexpression cells (KBv200, Hela/VCR) at the non-cytotoxic concentration. Doxorubicin accumulation assay and molecular-docking analysis reveal that the mechanism of its reversal MDR effect may be related to the increase in the intracellular concentration of substrate anticancer drugs.
Asunto(s)
Stachybotrys , Humanos , Bioensayo , Dicroismo Circular , Células HeLa , Resistencia a Múltiples MedicamentosRESUMEN
The ocean is the ultimate sink for all pollutants, rivers are important channels for land-based pollutants to enter the oceans. Riverine transport of polycyclic aromatic hydrocarbons (PAHs) to coastal seas in China poses environmental threats. This study examined the spatial and temporal distribution of PAHs in coastal rivers in Yancheng City in Jiangsu Province of China, with the aim of identifying their likely sources, concentrations, and influencing factors. Surface sediments were taken from the Xinyanggang River (XYR) and the Sheyang River (SYR). The concentrations of Æ©16PAHs in river sediments were measured on average 477.05 ng/g dry weight (dw), with values varying from 2.18 to 6351.42 ng/g, indicating a moderate pollution level, with a dominance of high molecular weight (HMW) PAHs. The XYR exhibited significantly higher PAHs concentrations compared to the SYR. The key sources of PAHs were vehicle emissions (47.87%), coal and natural gas combustion (35.07%). Geographically weighted regression and redundancy analysis linked PAHs pollution to distinct land use patterns and socioeconomic indicators, highlighting urban land as the major contributor, driven by high urbanization and industrialization (70.91%). In XYR, industrial activities and transport emissions were major contributors, while in SYR, agricultural activities predominantly influenced PAHs pollution. Urgent mitigation strategies are needed to reduce PAHs pollution in river sediments, mitigating ecological and human risks associated with these contaminants.
Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Humanos , Sedimentos Geológicos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Ríos , Efectos Antropogénicos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , China , Medición de RiesgoRESUMEN
Antibiotic resistance poses a growing risk to public health, requiring new tools to combat pathogenic bacteria. Contractile injection systems, including bacteriophage tails, pyocins, and bacterial type VI secretion systems, can efficiently penetrate cell envelopes and become potential antibacterial agents. Bacteriophage XM1 is a dsDNA virus belonging to the Myoviridae family and infecting Vibrio bacteria. The XM1 virion, made of 18 different proteins, consists of an icosahedral head and a contractile tail, terminated with a baseplate. Here, we report cryo-EM reconstructions of all components of the XM1 virion and describe the atomic structures of 14 XM1 proteins. The XM1 baseplate is composed of a central hub surrounded by six wedge modules to which twelve spikes are attached. The XM1 tail contains a fewer number of smaller proteins compared to other reported phage baseplates, depicting the minimum requirements for building an effective cell-envelope-penetrating machine. We describe the tail sheath structure in the pre-infection and post-infection states and its conformational changes during infection. In addition, we report, for the first time, the in situ structure of the phage neck region to near-atomic resolution. Based on these structures, we propose mechanisms of virus assembly and infection.
Asunto(s)
Bacteriófagos , Myoviridae , Myoviridae/genética , Bacteriófagos/genética , Antibacterianos , Membrana Celular , ADNRESUMEN
Korarchaeota, due to its rarity in common environments, is one of the archaeal phyla that has received the least attention from researchers. It was previously thought to consist solely of strict thermophiles. However, our study provides genetic evidence for the presence of korarchaeal members in temperate subsurface seawater. Furthermore, a systematic reclassification of the Korarchaeota based on 16S rRNA genes and genomes has revealed three novel marine groups (Kor-6 to Kor-8) at the root of the Korarchaeota branch. Kor-6 contains microbes that are present in moderate temperatures. All three novel marine phyla possess genes for the Wood-Ljungdahl pathway, and Kor-7 and Kor-8 possess fewer genes encoding oxygen resistance traits than other korarchaeal groups, suggesting a distinct lifestyle for these novel phyla. Our results, together with estimations of Korarchaeota divergence times, suggest that oxygen availability may be one of the important factors that have influenced the evolution of Korarchaeota. IMPORTANCE Korarchaeota were previously thought to inhabit exclusively high-temperature environments. However, our study provides genetic evidence for their unexpected presence in temperate marine waters. Through analysis of publicly available korarchaeal reference data, we have systematically reclassified Korarchaeota and identified the existence of three previously unknown marine groups (Kor-6, Kor-7, and Kor-8) at the root of the Korarchaeota branch. Comparative analysis of their gene content revealed that these novel groups exhibit a lifestyle distinct from other Korarchaeota. Specifically, they have the ability to fix carbon exclusively via the Wood-Ljungdahl (WL) pathway, and the genomes within Kor-7 and Kor-8 contain few genes encoding antioxidant enzymes, indicating their strictly anaerobic lifestyle. Further studies suggest that the genes related to methane metabolism and the WL pathway may have been inherited from a common ancestor of the Korarchaeota and that oxygen availability may be one of the important evolutionary factors that shaped the diversification of this archaeal phylum.
Asunto(s)
Korarchaeota , Archaea/genética , Oxígeno/metabolismo , Filogenia , ARN Ribosómico 16S/genéticaRESUMEN
In recent years, nitrogen removal by mixed microbial cultures has received increasing attention owing to cooperative metabolism. A natural bacterial-fungal consortium was isolated from mariculture, which exhibited an excellent aerobic denitrification capacity. Under aerobic conditions, nitrate removal and denitrification efficiencies were up to 100% and 44.27%, respectively. High-throughput sequencing and network analysis suggested that aerobic denitrification was potentially driven by the co-occurrence of the following bacterial and fungal genera: Vibrio, Fusarium, Gibberella, Meyerozyma, Exophiala and Pseudoalteromonas, with the dominance of Vibrio and Fusarium in bacterial and fungal communities, respectively. In addition, the isolated consortium had a high steady aerobic denitrification performance in our sub-culturing experiments. Our results provide new insights on the dynamics, network patterns and interactions of aerobic denitrifying microbial consortia with a high potential for new biotechnology applications.
RESUMEN
In this study, to explore the relationship between environmental factors and fungal diversity in the Shenzhen River ecosystem, multiple methods including chemical analysis, culture isolation, qPCR analysis of fungal ITS region and ITS-based Illumina next-generation-sequencing were integrated. A total of 115 isolates were finally isolated and could be classified into 23 genera. Top three abundant genera isolated were Meyerozyma (18 strains), Aspergillus (17 strains) and Penicillium (14 strains). Based on the Illumina sequencing approach, 829 OTUs were affiliated to seven phyla, 17 known classes, and 162 genera, indicating the Shenzhen estuary sediments are rich in fungal diversity. The major fungal genera were Meyerozyma, Trichoderma and Talaromyces. Environmental factors showed a gradient change in Shenzhen estuary, and fungal abundance was only significantly correlated with NH4+. Shannon index was significantly correlated with pH and IC (P < 0.05). Principal coordinate analysis based on OTU level grouped into three clusters among sampling sites along with the IC and pH gradient. Functional guilds analysis suggests most of the fungi in this studying area were almost all saprotrophs, suggesting a large number of saprophytic fungi may play a significant role in the organic matter decomposition and nutrient cycling process. In summary, this study will deepen our understanding of fungi community in Shenzhen River ecosystem and their distribution and potential function shaped by environmental factors.
Asunto(s)
Ecosistema , Micobioma , Ríos/microbiología , Estuarios , HongosRESUMEN
Thermoprofundales, formerly Marine Benthic Group D (MBG-D), is a ubiquitous archaeal lineage found in sedimentary environments worldwide. However, its taxonomic classification, metabolic pathways, and evolutionary history are largely unexplored because of its uncultivability and limited number of sequenced genomes. In this study, phylogenomic analysis and average amino acid identity values of a collection of 146 Thermoprofundales genomes revealed five Thermoprofundales subgroups (A-E) with distinct habitat preferences. Most of the microorganisms from Subgroups B and D were thermophiles inhabiting hydrothermal vents and hot spring sediments, whereas those from Subgroup E were adapted to surface environments where sunlight is available. H2 production may be featured in Thermoprofundales as evidenced by a gene cluster encoding the ancient membrane-bound hydrogenase (MBH) complex. Interestingly, a unique structure separating the MBH gene cluster into two modular units was observed exclusively in the genomes of Subgroup E, which included a peripheral arm encoding the [NiFe] hydrogenase domain and a membrane arm encoding the Na+/H+ antiporter domain. These two modular structures were confirmed to function independently by detecting the H2-evolving activity in vitro and salt tolerance to 0.2â M NaCl in vivo, respectively. The peripheral arm of Subgroup E resembles the proposed common ancestral respiratory complex of modern respiratory systems, which plays a key role in the early evolution of life. In addition, molecular dating analysis revealed that Thermoprofundales is an early emerging archaeal lineage among the extant MBH-containing microorganisms, indicating new insights into the evolution of this ubiquitous archaea lineage.
Asunto(s)
Archaea , Hidrogenasas , Archaea/genética , Archaea/metabolismo , Hidrogenasas/química , Hidrogenasas/genética , Hidrogenasas/metabolismo , Cloruro de Sodio/metabolismo , Filogenia , Sistema Respiratorio/metabolismo , Aminoácidos/genética , Antiportadores/genética , Antiportadores/metabolismoRESUMEN
The hyphenation of ion mobility spectrometry with high-resolution mass spectrometry has been widely used in the characterization of various metabolites. Nevertheless, such a powerful tool remains largely unexplored in natural products research, possibly mainly due to the lack of available compounds. To evaluate the ability of collision cross-sections (CCSs) in characterizing compounds, especially isomeric natural products, here we measured and compared the traveling-wave IMS-derived nitrogen CCS values for 75 marine-derived aphidicolanes. We established a CCS database for these compounds which contained 227 CCS values of different adducts. When comparing the CCS differences, 36 of 57 pairs (over 60%) of chromatographically neighboring compounds showed a ΔCCS over 2%. What is more, 64 of 104 isomeric pairs (over 60%) of aphidicolanes can be distinguished by their CCS values, and 13 of 18 pairs (over 70%) of chromatographically indistinguishable isomers can be differentiated from the mobility dimension. Our results strongly supported CCS as an important parameter with good orthogonality and complementarity with retention time. CCS is expected to play an important role in distinguishing complex and diverse marine natural products.
Asunto(s)
Productos Biológicos , Espectrometría de Movilidad Iónica , Espectrometría de Movilidad Iónica/métodos , Isomerismo , Espectrometría de Masas/métodos , NitrógenoRESUMEN
Lack of degradability and the accumulation of polymeric wastes increase the risk for the health of the environment. Recently, recycling of polymeric waste materials becomes increasingly important as raw materials for polymer synthesis are in short supply due to the rise in price and supply chain disruptions. As an important polymer, polyurethane (PU) is widely used in modern life, therefore, PU biodegradation is desirable to avoid its accumulation in the environment. In this study, we isolated a fungal strain Cladosporium halotolerans from the deep sea which can grow in mineral medium with a polyester PU (Impranil DLN) as a sole carbon source. Further, we demonstrate that it can degrade up to 80% of Impranil PU after 3 days of incubation at 28 â by breaking the carbonyl groups (1732 cm-1) and C-N-H bonds (1532 cm-1 and 1247 cm-1) as confirmed by Fourier-transform infrared (FTIR) spectroscopy analysis. Gas chromatography-mass spectrometry (GC-MS) analysis revealed polyols and alkanes as PU degradation intermediates, indicating the hydrolysis of ester and urethane bonds. Esterase and urease activities were detected in 7 days-old cultures with PU as a carbon source. Transcriptome analysis showed a number of extracellular protein genes coding for enzymes such as cutinase, lipase, peroxidase and hydrophobic surface binding proteins A (HsbA) were expressed when cultivated on Impranil PU. The yeast two-hybrid assay revealed that the hydrophobic surface binding protein ChHsbA1 directly interacts with inducible esterases, ChLip1 (lipase) and ChCut1 (cutinase). Further, the KEGG pathway for "fatty acid degradation" was significantly enriched in Impranil PU inducible genes, indicating that the fungus may use the degradation intermediates to generate energy via this pathway. Taken together, our data indicates secretion of both esterase and hydrophobic surface binding proteins by C. halotolerans plays an important role in Impranil PU absorption and subsequent degradation. Our study provides a mechanistic insight into Impranil PU biodegradation by deep sea fungi and provides the basis for future development of biotechnological PU recycling.
Asunto(s)
Poliésteres , Poliuretanos , Biodegradación Ambiental , Carbono/metabolismo , Cladosporium , Esterasas/metabolismo , Hongos/metabolismo , Lipasa , Poliésteres/química , Poliuretanos/química , Microbiología del SueloRESUMEN
In marine environments, increasing occurrence and numbers of microbial Antibiotic Resistance Gene (ARG) subtypes, especially of new beta-lactamases, have received lots of attention in recent years. Updated databases with novel developed tools provide new opportunities to obtain more comprehensive ARG profiles as well as ARG-carrying hosts. Yet, ARGs in human-associated marine aquaculture environments, e.g. in China, remains largely unknown. Using metagenomic data, we revealed high numbers of Multi-drug Resistance, beta-lactamase and aminoglycoside genes throughout the year. Thereby, Alpha- and Gamma-proteobacteria were assigned to the majority of beta-lactamase-carrying hosts. From Metagenome-assembled genomes, three blaF-like beta-lactamases (91.7-94.7% identity with beta-lactamase from Mycobacterium fortuitum (blaF)) were exclusively observed in an unclassified Mycobacterium genus. Notably, other new beta-lactamases, VMB-1-like (n = 3) (58.5-67.4% identity to Vibrio metallo-beta-lactamase 1 (VMB-1)), were found in Gammaproteobacteria. Additionally, 175 Multi-drug Resistant Organisms possessed at least 3 ARG subtypes, and seven of the potentially pathogenic genera (n = 17) were assigned to Gammaproteobacteria. These results, together with high-risk ARGs (e.g. tetM, dfrA14 and dfrA17), provide hosts and new beta-lactamases of ARGs in Chinese coastal aquaculture.
Asunto(s)
Antibacterianos , Metagenoma , Antibacterianos/farmacología , Acuicultura , Bahías , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Humanos , beta-Lactamasas/genéticaRESUMEN
Metagenomic explorations of the Earth's biosphere enable the discovery of previously unknown bacterial lineages of phylogenetic and ecological significance. Here, we retrieved 11 metagenomic-assembled genomes (MAGs) affiliated to three new monophyletic bacterial lineages from the seawater of the Yap Trench. Phylogenomic analysis revealed that each lineage is a new bacterial candidate phylum, subsequently named Candidatus Qinglongiota, Candidatus Heilongiota, and Candidatus Canglongiota. Metabolic reconstruction of genomes from the three phyla suggested that they adopt a versatile lifestyle, with the potential to utilize various types of sugars, proteins, and/or short-chain fatty acids through anaerobic pathways. This was further confirmed by a global distribution map of the three phyla, indicating a preference for oxygen-limited or particle-attached niches, such as anoxic sedimentary environments. Of note, Candidatus Canglongiota genomes harbor genes for the complete Wood- Ljungdahl pathway and sulfate reduction that are similar to those identified in some sulfate-reducing bacteria. Evolutionary analysis indicated that gene gain and loss events, and horizontal gene transfer (HGT) play important roles in shaping the genomic and metabolic features of the three new phyla. This study presents the genomic insight into the ecology, metabolism, and evolution of three new phyla, which broadens the phylum-level diversity within the domain Bacteria.
Asunto(s)
Bacterias , Metagenoma , Genoma Bacteriano/genética , Genómica , Filogenia , Sulfatos/metabolismoRESUMEN
BACKGROUND: Deep-sea hydrothermal vents represent unique ecosystems that redefine our understanding of the limits of life. They are widely distributed in deep oceans and typically form along mid-ocean ridges. To date, the hydrothermal systems in the Mid-Atlantic Ridge south of 14°S remain barely explored, limiting our understanding of the microbial community in this distinct ecosystem. The Deyin-1 is a newly discovered hydrothermal field in this area. By applying the metagenomic analysis, we aim at gaining much knowledge of the biodiversity and functional capability of microbial community inhabiting this field. RESULTS: In the current study, 219 metagenomic assembled genomes (MAGs) were reconstructed, unveiling a diverse and variable community dominated by Bacteroidetes, Nitrospirae, Alpha-, Delta-, and Gammaproteobacteria in the active and inactive chimney samples as well as hydrothermal oxide samples. Most of these major taxa were potentially capable of using reduced sulfur and hydrogen as primary energy sources. Many members within the major taxa exhibited potentials of metabolic plasticity by possessing multiple energy metabolic pathways. Among these samples, different bacteria were found to be the major players of the same metabolic pathways, further supporting the variable and functionally redundant community in situ. In addition, a high proportion of MAGs harbored the genes of carbon fixation and extracellular carbohydrate-active enzymes, suggesting that both heterotrophic and autotrophic strategies could be essential for their survival. Notably, for the first time, the genus Candidatus Magnetobacterium was shown to potentially fix nitrogen, indicating its important role in the nitrogen cycle of inactive chimneys. Moreover, the metabolic plasticity of microbes, diverse and variable community composition, and functional redundancy of microbial communities may represent the adaptation strategies to the geochemically complex and fluctuating environmental conditions in deep-sea hydrothermal fields. CONCLUSIONS: This represents the first assembled-genome-based investigation into the microbial community and metabolism of a hydrothermal field in the Mid-Atlantic Ridge south of 14°S. The findings revealed that a high proportion of microbes could benefit from simultaneous use of heterotrophic and autotrophic strategies in situ. It also presented novel members of potential diazotrophs and highlighted the metabolic plasticity and functional redundancy across deep-sea hydrothermal systems. Video abstract.
Asunto(s)
Respiraderos Hidrotermales , Microbiota , Respiraderos Hidrotermales/microbiología , Microbiota/genética , Nitrógeno/metabolismo , Filogenia , ARN Ribosómico 16S/genéticaRESUMEN
Three new phomalone derivatives, phomalichenones E-G (1-3), and seven known analogues (4-10) were isolated from the cultures of a deep-sea-derived fungus Alternaria sp. MCCC 3A00467. Their structures were elucidated by spectroscopic methods, including the 1D and 2D NMR, and ECD spectrum. Among the compounds isolated, phomalichenone F (2) presented cytotoxic activity against human myeloma cancer U266 cells with IC50 value of 24.99 µg/mL. The most active compound, 10, showed cytotoxicity against U266, HepG2 and A549 cells with IC50 values of 13.26, 14.69 and 24.39 µg/mL, respectively.
Asunto(s)
Alternaria , Antineoplásicos , Antineoplásicos/farmacología , Línea Celular Tumoral , HumanosRESUMEN
The archaeal phylum Woesearchaeota, within the DPANN superphylum, includes phylogenetically diverse microorganisms that inhabit various environments. Their biology is poorly understood due to the lack of cultured isolates. Here, we analyze datasets of Woesearchaeota 16S rRNA gene sequences and metagenome-assembled genomes to infer global distribution patterns, ecological preferences and metabolic capabilities. Phylogenomic analyses indicate that the phylum can be classified into ten subgroups, termed A-J. While a symbiotic lifestyle is predicted for most, some members of subgroup J might be host-independent. The genomes of several Woesearchaeota, including subgroup J, encode putative [FeFe] hydrogenases (known to be important for fermentation in other organisms), suggesting that these archaea might be anaerobic fermentative heterotrophs.