Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 11: 1176054, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180038

RESUMEN

Objective: The relationship between muscle activation during motor tasks and cerebral cortical activity remains poorly understood. The aim of this study was to investigate the correlation between brain network connectivity and the non-linear characteristics of muscle activation changes during different levels of isometric contractions. Methods: Twenty-one healthy subjects were recruited and were asked to perform isometric elbow contractions in both dominant and non-dominant sides. Blood oxygen concentrations in brain from functional Near-infrared Spectroscopy (fNIRS) and surface electromyography (sEMG) signals in the biceps brachii (BIC) and triceps brachii (TRI) muscles were recorded simultaneously and compared during 80% and 20% of maximum voluntary contraction (MVC). Functional connectivity, effective connectivity, and graph theory indicators were used to measure information interaction in brain activity during motor tasks. The non-linear characteristics of sEMG signals, fuzzy approximate entropy (fApEn), were used to evaluate the signal complexity changes in motor tasks. Pearson correlation analysis was used to examine the correlation between brain network characteristic values and sEMG parameters under different task conditions. Results: The effective connectivity between brain regions in motor tasks in dominant side was significantly higher than that in non-dominant side under different contractions (p < 0.05). The results of graph theory analysis showed that the clustering coefficient and node-local efficiency of the contralateral motor cortex were significantly varied under different contractions (p < 0.01). fApEn and co-contraction index (CCI) of sEMG under 80% MVC condition were significantly higher than that under 20% MVC condition (p < 0.05). There was a significant positive correlation between the fApEn and the blood oxygen value in the contralateral brain regions in both dominant or non-dominant sides (p < 0.001). The node-local efficiency of the contralateral motor cortex in the dominant side was positively correlated with the fApEn of the EMG signals (p < 0.05). Conclusion: In this study, the mapping relationship between brain network related indicators and non-linear characteristic of sEMG in different motor tasks was verified. These findings provide evidence for further exploration of the interaction between the brain activity and the execution of motor tasks, and the parameters might be useful in evaluation of rehabilitation intervention.

2.
Front Neurosci ; 16: 886909, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720692

RESUMEN

Objective: Increased muscle co-contraction of the agonist and antagonist muscles during voluntary movement is commonly observed in the upper limbs of stroke survivors. Much remain to be understood about the underlying mechanism. The aim of the study is to investigate the correlation between increased muscle co-contraction and the function of the corticospinal tract (CST). Methods: Nine stroke survivors and nine age-matched healthy individuals were recruited. All the participants were instructed to perform isometric maximal voluntary contraction (MVC) and horizontal task which consist of sponge grasp, horizontal transportation, and sponge release. We recorded electromyography (EMG) activities from four muscle groups during the MVC test and horizontal task in the upper limbs of stroke survivors. The muscle groups consist of extensor digitorum (ED), flexor digitorum (FD), triceps brachii (TRI), and biceps brachii (BIC). The root mean square (RMS) of EMG was applied to assess the muscle activation during horizontal task. We adopted a co-contraction index (CI) to evaluate the degree of muscle co-contraction. CST function was evaluated by the motor-evoked potential (MEP) parameters, including resting motor threshold, amplitude, latency, and central motor conduction time. We employed correlation analysis to probe the association between CI and MEP parameters. Results: The RMS, CI, and MEP parameters on the affected side showed significant difference compared with the unaffected side of stroke survivors and the healthy group. The result of correlation analysis showed that CI was significantly correlated with MEP parameters in stroke survivors. Conclusion: There existed increased muscle co-contraction and impairment in CST functionality on the affected side of stroke survivors. The increased muscle co-contraction was correlated with the impairment of the CST. Intervention that could improve the excitability of the CST may contribute to the recovery of muscle discoordination in the upper limbs of stroke survivors.

3.
Gait Posture ; 92: 44-50, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34823100

RESUMEN

INTRODUCTION: Patients with chronic non-specific low back pain (CNSLBP) were found with impaired postural control in previous studies. Since the trunk muscle take important efforts on core stability, the study aimed to examine the relationships of postural control during stance tasks and the contractility of trunk muscle in young adults with CNSLBP and without. METHODS: Healthy individuals (n = 25) and individuals with CNSLBP (n = 30) were included. The thickness of the bilateral transversus abdominis (TrA) and lumbar multifidus (MF) was measured during rest and maximal voluntary contraction, and the change percentages (TrA%, MF%) were calculated. Regarding postural control, COP path length and sway area during the stance tasks were measured thrice in each group. RESULTS: The bilateral TrA% of the CNSLBP group was less than that of the HC group (p < 0.05). The bilateral TrA% of the CNSLBP group was less than that of the HC group (p < 0.05). The bilateral MF% showed no significantly different(p > 0.05) between the two groups. Compared with healthy controls, CNSLBP patients resulted larger path length and sway area of COP during most of static stance tasks. During the EO task in the CNSLBP group, TrA% was found correlate to COP path length (p < 0.05); the right MF% was correlated with COP sway area (p < 0.05). No significant correlations appeared in the healthy controls (p > 0.05). CONCLUSIONS: Compared with healthy individuals, impaired postural control during static stance with eyes open in patients with CNSLBP was likely to be related to the poor contraction ability of bilateral transversus abdominis and correlated to the normal contraction ability of right lumbar multifidus.


Asunto(s)
Dolor de la Región Lumbar , Músculos Abdominales/fisiología , Estudios Transversales , Humanos , Contracción Muscular/fisiología , Músculos Paraespinales , Equilibrio Postural/fisiología , Adulto Joven
4.
Front Bioeng Biotechnol ; 8: 589321, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33313042

RESUMEN

Spasticity is a major contributor to pain, disabilities and many secondary complications after stroke. Investigating the effect of spasticity on neuromuscular function in stroke patients may facilitate the development of its clinical treatment, while the underlying mechanism of spasticity still remains unclear. The aim of this study is to explore the difference in the neuromuscular response to passive stretch between healthy subjects and stroke patients with spasticity. Five healthy subjects and three stroke patients with spastic elbow flexor were recruited to complete the passive stretch at four angular velocities (10°/s, 60°/s, 120°/s, and 180°/s) performed by an isokinetic dynamometer. Meanwhile, the 64-channel electromyography (EMG) signals from biceps brachii muscle were recorded. The root mean square (RMS) and fuzzy entropy (FuzzyEn) of EMG recordings of each channel were calculated, and the relationship between the average value of RMS and FuzzyEn over 64-channel was examined. The two groups showed similar performance from results that RMS increased and FuzzyEn decreased with the increment of stretch velocity, and the RMS was negatively correlated with FuzzyEn. The difference is that stroke patients showed higher RMS and lower FuzzyEn during quick stretch than the healthy group. Furthermore, compared with the healthy group, distinct variations of spatial distribution within the spastic muscle were found in the EMG activity of stroke patients. These results suggested that a large number of motor units were recruited synchronously in the presence of spasticity, and this recruitment pattern was non-uniform in the whole muscle. Using a combination of RMS and FuzzyEn calculated from high-density EMG (HD-EMG) recordings can provide an innovative insight into the physiological mechanism underlying spasticity, and FuzzyEn could potentially be used as a new indicator for spasticity, which would be beneficial to clinical intervention and further research on spasticity.

5.
J Int Med Res ; 48(3): 300060519888425, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31801402

RESUMEN

Post-stroke spasticity seriously affects patients' quality of life. Spasticity is considered to involve both neural and non-neural factors. Current clinical scales, such as the Modified Ashworth Scale and the Modified Tardieu Scale, lack reliability and reproducibility. These scales are also unable to identify the neural and non-neural contributions to spasticity. Surface electromyography and biomechanical and myotonometry measurement methods for post-stroke spasticity are discussed in this report. Surface electromyography can provide neural information, while myotonometry can estimate muscular properties. Both the neural and non-neural contributions can be estimated by biomechanical measurement. These laboratory methods can quantitatively assess spasticity. They can provide more valuable information for further study on treatment and rehabilitation than clinical scales.


Asunto(s)
Espasticidad Muscular , Calidad de Vida , Accidente Cerebrovascular , Electromiografía , Humanos , Espasticidad Muscular/diagnóstico , Espasticidad Muscular/etiología , Reproducibilidad de los Resultados , Accidente Cerebrovascular/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...