Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
2.
Blood ; 143(12): 1124-1138, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38153903

RESUMEN

ABSTRACT: The CD161 inhibitory receptor is highly upregulated by tumor-infiltrating T cells in multiple human solid tumor types, and its ligand, CLEC2D, is expressed by both tumor cells and infiltrating myeloid cells. Here, we assessed the role of the CD161 receptor in hematological malignancies. Systematic analysis of CLEC2D expression using the Cancer Cell Line Encyclopedia revealed that CLEC2D messenger RNA was most abundant in hematological malignancies, including B-cell and T-cell lymphomas as well as lymphocytic and myelogenous leukemias. CLEC2D protein was detected by flow cytometry on a panel of cell lines representing a diverse set of hematological malignancies. We, therefore, used yeast display to generate a panel of high-affinity, fully human CD161 monoclonal antibodies (mAbs) that blocked CLEC2D binding. These mAbs were specific for CD161 and had a similar affinity for human and nonhuman primate CD161, a property relevant for clinical translation. A high-affinity CD161 mAb enhanced key aspects of T-cell function, including cytotoxicity, cytokine production, and proliferation, against B-cell lines originating from patients with acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and Burkitt lymphoma. In humanized mouse models, this CD161 mAb enhanced T-cell-mediated immunity, resulting in a significant survival benefit. Single cell RNA-seq data demonstrated that CD161 mAb treatment enhanced expression of cytotoxicity genes by CD4 T cells as well as a tissue-residency program by CD4 and CD8 T cells that is associated with favorable survival outcomes in multiple human cancer types. These fully human mAbs, thus, represent potential immunotherapy agents for hematological malignancies.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Animales , Ratones , Humanos , Linfocitos T CD4-Positivos , Inmunidad Celular , Linfocitos T CD8-positivos , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Subfamilia B de Receptores Similares a Lectina de Células NK/genética
3.
Cell ; 185(14): 2591-2608.e30, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35803246

RESUMEN

Melanoma brain metastasis (MBM) frequently occurs in patients with advanced melanoma; yet, our understanding of the underlying salient biology is rudimentary. Here, we performed single-cell/nucleus RNA-seq in 22 treatment-naive MBMs and 10 extracranial melanoma metastases (ECMs) and matched spatial single-cell transcriptomics and T cell receptor (TCR)-seq. Cancer cells from MBM were more chromosomally unstable, adopted a neuronal-like cell state, and enriched for spatially variably expressed metabolic pathways. Key observations were validated in independent patient cohorts, patient-derived MBM/ECM xenograft models, RNA/ATAC-seq, proteomics, and multiplexed imaging. Integrated spatial analyses revealed distinct geography of putative cancer immune evasion and evidence for more abundant intra-tumoral B to plasma cell differentiation in lymphoid aggregates in MBM. MBM harbored larger fractions of monocyte-derived macrophages and dysfunctional TOX+CD8+ T cells with distinct expression of immune checkpoints. This work provides comprehensive insights into MBM biology and serves as a foundational resource for further discovery and therapeutic exploration.


Asunto(s)
Neoplasias Encefálicas , Melanoma , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/secundario , Linfocitos T CD8-positivos/patología , Ecosistema , Humanos , RNA-Seq
4.
Cell ; 185(16): 2918-2935.e29, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35803260

RESUMEN

Neoadjuvant immune checkpoint blockade has shown promising clinical activity. Here, we characterized early kinetics in tumor-infiltrating and circulating immune cells in oral cancer patients treated with neoadjuvant anti-PD-1 or anti-PD-1/CTLA-4 in a clinical trial (NCT02919683). Tumor-infiltrating CD8 T cells that clonally expanded during immunotherapy expressed elevated tissue-resident memory and cytotoxicity programs, which were already active prior to therapy, supporting the capacity for rapid response. Systematic target discovery revealed that treatment-expanded tumor T cell clones in responding patients recognized several self-antigens, including the cancer-specific antigen MAGEA1. Treatment also induced a systemic immune response characterized by expansion of activated T cells enriched for tumor-infiltrating T cell clonotypes, including both pre-existing and emergent clonotypes undetectable prior to therapy. The frequency of activated blood CD8 T cells, notably pre-treatment PD-1-positive KLRG1-negative T cells, was strongly associated with intra-tumoral pathological response. These results demonstrate how neoadjuvant checkpoint blockade induces local and systemic tumor immunity.


Asunto(s)
Neoplasias , Receptor de Muerte Celular Programada 1 , Linfocitos T CD8-positivos , Humanos , Inmunoterapia , Linfocitos Infiltrantes de Tumor , Terapia Neoadyuvante , Neoplasias/terapia , Microambiente Tumoral
5.
Nat Commun ; 13(1): 2559, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562350

RESUMEN

c-MYC (MYC) is a major driver of prostate cancer tumorigenesis and progression. Although MYC is overexpressed in both early and metastatic disease and associated with poor survival, its impact on prostate transcriptional reprogramming remains elusive. We demonstrate that MYC overexpression significantly diminishes the androgen receptor (AR) transcriptional program (the set of genes directly targeted by the AR protein) in luminal prostate cells without altering AR expression. Analyses of clinical specimens reveal that concurrent low AR and high MYC transcriptional programs accelerate prostate cancer progression toward a metastatic, castration-resistant disease. Data integration of single-cell transcriptomics together with ChIP-seq uncover an increase in RNA polymerase II (Pol II) promoter-proximal pausing at AR-dependent genes following MYC overexpression without an accompanying deactivation of AR-bound enhancers. Altogether, our findings suggest that MYC overexpression antagonizes the canonical AR transcriptional program and contributes to prostate tumor initiation and progression by disrupting transcriptional pause release at AR-regulated genes.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica , Genes myc , Humanos , Masculino , Próstata/patología , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-myc , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo
7.
Biophys J ; 120(21): 4891-4902, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34529946

RESUMEN

Immune surveillance cells such as T cells and phagocytes utilize integral plasma membrane receptors to recognize surface signatures on triggered and activated cells such as those in apoptosis. One such family of plasma membrane sensors, the transmembrane immunoglobulin and mucin domain (Tim) proteins, specifically recognize phosphatidylserine (PS) but elicit distinct immunological responses. The molecular basis for the recognition of lipid signals on target cell surfaces is not well understood. Previous results suggest that basic side chains present at the membrane interface on the Tim proteins might facilitate association with additional anionic lipids including but not necessarily limited to PS. We, therefore, performed a comparative quantitative analysis of the binding of the murine Tim1, Tim3, and Tim4, to synthetic anionic phospholipid membranes under physiologically relevant conditions. X-ray reflectivity and vesicle binding studies were used to compare the water-soluble domain of Tim3 with results previously obtained for Tim1 and Tim4. Although a calcium link was essential for all three proteins, the three homologs differed in how they balance the hydrophobic and electrostatic interactions driving membrane association. The proteins also varied in their sensing of phospholipid chain unsaturation and showed different degrees of cooperativity in their dependence on bilayer PS concentration. Surprisingly, trace amounts of anionic phosphatidic acid greatly strengthened the bilayer association of Tim3 and Tim4, but not Tim1. A novel mathematical model provided values for the binding parameters and illuminated the complex interplay among ligands. In conclusion, our results provide a quantitative description of the contrasting selectivity used by three Tim proteins in the recognition of phospholipids presented on target cell surfaces. This paradigm is generally applicable to the analysis of the binding of peripheral proteins to target membranes through the heterotropic cooperative interactions of multiple ligands.


Asunto(s)
Proteínas de la Membrana , Mucinas , Animales , Receptor Celular 1 del Virus de la Hepatitis A , Membranas , Ratones , Fosfatidilserinas
8.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34172580

RESUMEN

High-acuity αßT cell receptor (TCR) recognition of peptides bound to major histocompatibility complex molecules (pMHCs) requires mechanosensing, a process whereby piconewton (pN) bioforces exert physical load on αßTCR-pMHC bonds to dynamically alter their lifetimes and foster digital sensitivity cellular signaling. While mechanotransduction is operative for both αßTCRs and pre-TCRs within the αßT lineage, its role in γδT cells is unknown. Here, we show that the human DP10.7 γδTCR specific for the sulfoglycolipid sulfatide bound to CD1d only sustains a significant load and undergoes force-induced structural transitions when the binding interface-distal γδ constant domain (C) module is replaced with that of αß. The chimeric γδ-αßTCR also signals more robustly than does the wild-type (WT) γδTCR, as revealed by RNA-sequencing (RNA-seq) analysis of TCR-transduced Rag2-/- thymocytes, consistent with structural, single-molecule, and molecular dynamics studies reflective of γδTCRs as mediating recognition via a more canonical immunoglobulin-like receptor interaction. Absence of robust, force-related catch bonds, as well as γδTCR structural transitions, implies that γδT cells do not use mechanosensing for ligand recognition. This distinction is consonant with the fact that their innate-type ligands, including markers of cellular stress, are expressed at a high copy number relative to the sparse pMHC ligands of αßT cells arrayed on activating target cells. We posit that mechanosensing emerged over ∼200 million years of vertebrate evolution to fulfill indispensable adaptive immune recognition requirements for pMHC in the αßT cell lineage that are unnecessary for the γδT cell lineage mechanism of non-pMHC ligand detection.


Asunto(s)
Mecanotransducción Celular , Receptores de Antígenos de Linfocitos T gamma-delta/química , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Secuencia de Aminoácidos , Animales , Perfilación de la Expresión Génica , Humanos , Ligandos , Ratones , Dominios Proteicos , Estabilidad Proteica , Estructura Secundaria de Proteína , Receptores de Antígenos de Linfocitos T alfa-beta/química , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Transducción de Señal , Imagen Individual de Molécula , Linfocitos T/metabolismo , Timocitos/metabolismo , Timo/metabolismo , Transcriptoma/genética
9.
Cancer Discov ; 11(10): 2564-2581, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33941591

RESUMEN

CDK4/6 inhibitors are approved to treat breast cancer and are in trials for other malignancies. We examined CDK4/6 inhibition in mouse and human CD8+ T cells during early stages of activation. Mice receiving tumor-specific CD8+ T cells treated with CDK4/6 inhibitors displayed increased T-cell persistence and immunologic memory. CDK4/6 inhibition upregulated MXD4, a negative regulator of MYC, in both mouse and human CD8+ T cells. Silencing of Mxd4 or Myc in mouse CD8+ T cells demonstrated the importance of this axis for memory formation. We used single-cell transcriptional profiling and T-cell receptor clonotype tracking to evaluate recently activated human CD8+ T cells in patients with breast cancer before and during treatment with either palbociclib or abemaciclib. CDK4/6 inhibitor therapy in humans increases the frequency of CD8+ memory precursors and downregulates their expression of MYC target genes, suggesting that CDK4/6 inhibitors in patients with cancer may augment long-term protective immunity. SIGNIFICANCE: CDK4/6 inhibition skews newly activated CD8+ T cells toward a memory phenotype in mice and humans with breast cancer. CDK4/6 inhibitors may have broad utility outside breast cancer, particularly in the neoadjuvant setting to augment CD8+ T-cell priming to tumor antigens prior to dosing with checkpoint blockade.This article is highlighted in the In This Issue feature, p. 2355.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Adulto , Anciano , Aminopiridinas/uso terapéutico , Animales , Bencimidazoles/uso terapéutico , Neoplasias de la Mama/patología , Neoplasias de la Mama Masculina/tratamiento farmacológico , Neoplasias de la Mama Masculina/patología , Linfocitos T CD8-positivos/efectos de los fármacos , Línea Celular Tumoral , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Piperazinas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/uso terapéutico
10.
Sci Transl Med ; 13(594)2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34011631

RESUMEN

Loss of major histocompatibility complex (MHC) class I and interferon-γ (IFN-γ) sensing are major causes of primary and acquired resistance to checkpoint blockade immunotherapy. Thus, additional treatment options are needed for tumors that lose expression of MHC class I. The cellular inhibitor of apoptosis proteins 1 and 2 (cIAP1/2) regulate classical and alternative nuclear factor κB (NF-κB) signaling. Induction of noncanonical NF-κB signaling with cIAP1/2 antagonists mimics costimulatory signaling, augmenting antitumor immunity. We show that induction of noncanonical NF-κB signaling induces T cell-dependent immune responses, even in ß2-microglobulin (ß2M)-deficient tumors, demonstrating that direct CD8 T cell recognition of tumor cell-expressed MHC class I is not required. Instead, T cell-produced lymphotoxin reprograms both mouse and human macrophages to be tumoricidal. In wild-type mice, but not mice incapable of antigen-specific T cell responses, cIAP1/2 antagonism reduces tumor burden by increasing phagocytosis of live tumor cells. Efficacy is augmented by combination with CD47 blockade. Thus, activation of noncanonical NF-κB stimulates a T cell-macrophage axis that curtails growth of tumors that are resistant to checkpoint blockade because of loss of MHC class I or IFN-γ sensing. These findings provide a potential mechanism for controlling checkpoint blockade refractory tumors.


Asunto(s)
Reprogramación Celular , Antígenos de Histocompatibilidad Clase I , Inmunoterapia , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Neoplasias/terapia , Fagocitos , Linfocitos T/inmunología , Animales , Humanos , Interferón gamma , Macrófagos , Ratones , FN-kappa B , Neoplasias/inmunología , Transducción de Señal
11.
Nature ; 595(7865): 114-119, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33915568

RESUMEN

Respiratory failure is the leading cause of death in patients with severe SARS-CoV-2 infection1,2, but the host response at the lung tissue level is poorly understood. Here we performed single-nucleus RNA sequencing of about 116,000 nuclei from the lungs of nineteen individuals who died of COVID-19 and underwent rapid autopsy and seven control individuals. Integrated analyses identified substantial alterations in cellular composition, transcriptional cell states, and cell-to-cell interactions, thereby providing insight into the biology of lethal COVID-19. The lungs from individuals with COVID-19 were highly inflamed, with dense infiltration of aberrantly activated monocyte-derived macrophages and alveolar macrophages, but had impaired T cell responses. Monocyte/macrophage-derived interleukin-1ß and epithelial cell-derived interleukin-6 were unique features of SARS-CoV-2 infection compared to other viral and bacterial causes of pneumonia. Alveolar type 2 cells adopted an inflammation-associated transient progenitor cell state and failed to undergo full transition into alveolar type 1 cells, resulting in impaired lung regeneration. Furthermore, we identified expansion of recently described CTHRC1+ pathological fibroblasts3 contributing to rapidly ensuing pulmonary fibrosis in COVID-19. Inference of protein activity and ligand-receptor interactions identified putative drug targets to disrupt deleterious circuits. This atlas enables the dissection of lethal COVID-19, may inform our understanding of long-term complications of COVID-19 survivors, and provides an important resource for therapeutic development.


Asunto(s)
COVID-19/patología , COVID-19/virología , Pulmón/patología , SARS-CoV-2/patogenicidad , Análisis de la Célula Individual , Anciano , Anciano de 80 o más Años , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/virología , Atlas como Asunto , Autopsia , COVID-19/inmunología , Estudios de Casos y Controles , Femenino , Fibroblastos/patología , Fibrosis/patología , Fibrosis/virología , Humanos , Inflamación/patología , Inflamación/virología , Macrófagos/patología , Macrófagos/virología , Macrófagos Alveolares/patología , Macrófagos Alveolares/virología , Masculino , Persona de Mediana Edad , Células Plasmáticas/inmunología , Linfocitos T/inmunología
12.
Cell ; 184(6): 1575-1588, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33675691

RESUMEN

During the past decade, immunotherapies have made a major impact on the treatment of diverse types of cancer. Inflammatory toxicities are not only a major concern for Food and Drug Administration (FDA)-approved checkpoint blockade and chimeric antigen receptor (CAR) T cell therapies, but also limit the development and use of combination therapies. Fundamentally, these adverse events highlight the intricate balance of pro- and anti-inflammatory pathways that regulate protective immune responses. Here, we discuss the cellular and molecular mechanisms of inflammatory adverse events, current approaches to treatment, as well as opportunities for the design of immunotherapies that limit such inflammatory toxicities while preserving anti-tumor efficacy.


Asunto(s)
Inmunoterapia/efectos adversos , Inflamación/etiología , Neoplasias/inmunología , Neoplasias/terapia , Animales , Citocinas/efectos adversos , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Linfocitos T/inmunología
13.
Nat Genet ; 53(3): 332-341, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33649592

RESUMEN

Resistance to immune checkpoint inhibitors (ICIs) is a key challenge in cancer therapy. To elucidate underlying mechanisms, we developed Perturb-CITE-sequencing (Perturb-CITE-seq), enabling pooled clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 perturbations with single-cell transcriptome and protein readouts. In patient-derived melanoma cells and autologous tumor-infiltrating lymphocyte (TIL) co-cultures, we profiled transcriptomes and 20 proteins in ~218,000 cells under ~750 perturbations associated with cancer cell-intrinsic ICI resistance (ICR). We recover known mechanisms of resistance, including defects in the interferon-γ (IFN-γ)-JAK/STAT and antigen-presentation pathways in RNA, protein and perturbation space, and new ones, including loss/downregulation of CD58. Loss of CD58 conferred immune evasion in multiple co-culture models and was downregulated in tumors of melanoma patients with ICR. CD58 protein expression was not induced by IFN-γ signaling, and CD58 loss conferred immune evasion without compromising major histocompatibility complex (MHC) expression, suggesting that it acts orthogonally to known mechanisms of ICR. This work provides a framework for the deciphering of complex mechanisms by large-scale perturbation screens with multimodal, single-cell readouts, and discovers potentially clinically relevant mechanisms of immune evasion.


Asunto(s)
Antígenos CD58/inmunología , Resistencia a Antineoplásicos/inmunología , Melanoma/patología , Análisis de la Célula Individual/métodos , Escape del Tumor , Antígenos CD58/genética , Antígenos CD58/metabolismo , Sistemas CRISPR-Cas , Técnicas de Cocultivo , Biología Computacional/métodos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Epítopos/genética , Técnicas de Inactivación de Genes , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Interferón gamma/inmunología , Interferón gamma/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Análisis de Secuencia de ARN , Escape del Tumor/genética
14.
Nat Med ; 27(3): 515-525, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33479501

RESUMEN

Personal neoantigen vaccines have been envisioned as an effective approach to induce, amplify and diversify antitumor T cell responses. To define the long-term effects of such a vaccine, we evaluated the clinical outcome and circulating immune responses of eight patients with surgically resected stage IIIB/C or IVM1a/b melanoma, at a median of almost 4 years after treatment with NeoVax, a long-peptide vaccine targeting up to 20 personal neoantigens per patient ( NCT01970358 ). All patients were alive and six were without evidence of active disease. We observed long-term persistence of neoantigen-specific T cell responses following vaccination, with ex vivo detection of neoantigen-specific T cells exhibiting a memory phenotype. We also found diversification of neoantigen-specific T cell clones over time, with emergence of multiple T cell receptor clonotypes exhibiting distinct functional avidities. Furthermore, we detected evidence of tumor infiltration by neoantigen-specific T cell clones after vaccination and epitope spreading, suggesting on-target vaccine-induced tumor cell killing. Personal neoantigen peptide vaccines thus induce T cell responses that persist over years and broaden the spectrum of tumor-specific cytotoxicity in patients with melanoma.


Asunto(s)
Antígenos de Neoplasias/genética , Vacunas contra el Cáncer/inmunología , Epítopos/inmunología , Memoria Inmunológica , Melanoma/inmunología , Humanos , Melanoma/patología
15.
Cancer Immunol Res ; 9(4): 470-485, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33514509

RESUMEN

Tumor-infiltrating myeloid-derived suppressor cells (MDSC) are associated with poor survival outcomes in many human cancers. MDSCs inhibit T cell-mediated tumor immunity in part because they strongly inhibit T-cell function. However, whether MDSCs inhibit early or later steps of T-cell activation is not well established. Here we show that MDSCs inhibited proliferation and induced apoptosis of CD8+ T cells even in the presence of dendritic cells (DC) presenting a high-affinity cognate peptide. This inhibitory effect was also observed with delayed addition of MDSCs to cocultures, consistent with functional data showing that T cells expressed multiple early activation markers even in the presence of MDSCs. Single-cell RNA-sequencing analysis of CD8+ T cells demonstrated a p53 transcriptional signature in CD8+ T cells cocultured with MDSCs and DCs. Confocal microscopy showed induction of DNA damage and nuclear accumulation of activated p53 protein in a substantial fraction of these T cells. DNA damage in T cells was dependent on the iNOS enzyme and subsequent nitric oxide release by MDSCs. Small molecule-mediated inhibition of iNOS or inactivation of the Nos2 gene in MDSCs markedly diminished DNA damage in CD8+ T cells. DNA damage in CD8+ T cells was also observed in KPC pancreatic tumors but was reduced in tumors implanted into Nos2-deficient mice compared with wild-type mice. These data demonstrate that MDSCs do not block early steps of T-cell activation but rather induce DNA damage and p53 pathway activation in CD8+ T cells through an iNOS-dependent pathway.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Células Supresoras de Origen Mieloide/inmunología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Línea Celular Tumoral , Daño del ADN , Humanos , Inmunosupresores , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo II/genética , Transducción de Señal/inmunología
16.
Front Neurol ; 11: 903, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32982928

RESUMEN

In Charcot-Marie-Tooth type 1A (CMT1A), Schwann cells exhibit a preponderant transcriptional deficiency of genes involved in lipid biosynthesis. This perturbed lipid metabolism affects the peripheral nerve physiology and the structure of peripheral myelin. Nevertheless, the identification and functional characterization of the lipid species mainly responsible for CMT1A myelin impairment currently lack. This is critical in the pathogenesis of the neuropathy since lipids are many and complex molecules which play essential roles in the cell, including the structural components of cellular membranes, cell signaling, and membrane trafficking. Moreover, lipids themselves are able to modify gene transcription, thereby affecting the genotype-phenotype correlation of well-defined inherited diseases, including CMT1A. Here we report for the first time a comprehensive lipid profiling in experimental and human CMT1A, demonstrating a previously unknown specific alteration of sphingolipid (SP) and glycerophospholipid (GP) metabolism. Notably, SP, and GP changes even emerge in biological fluids of CMT1A rat and human patients, implying a systemic metabolic dysfunction for these specific lipid classes. Actually, SP and GP are not merely reduced; their expression is instead aberrant, contributing to the ultrastructural abnormalities that we detailed by X-ray diffraction in rat and human internode myelin. The modulation of SP and GP pathways in myelinating dorsal root ganglia cultures clearly sustains this issue. In fact, just selected molecules interacting with these pathways are able to modify the altered geometric parameters of CMT1A myelinated fibers. Overall, we propose to exploit the present SP and GP metabolism impairment to select effective drugs and validate a set of reliable biomarkers, which remain a challenge in CMT1A neuropathy.

17.
JAMA Oncol ; 6(10): 1563-1570, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32852531

RESUMEN

Importance: Novel approaches are needed to improve outcomes in patients with squamous cell carcinoma of the oral cavity. Neoadjuvant immunotherapy given prior to surgery and combining programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) immune checkpoint inhibitors are 2 strategies to enhance antitumor immune responses that could be of benefit. Design, Setting, and Participants: In this randomized phase 2 clinical trial conducted at 1 academic center, 29 patients with untreated squamous cell carcinoma of the oral cavity (≥T2, or clinically node positive) were enrolled between 2016 to 2019. Interventions: Treatment was administered with nivolumab, 3 mg/kg, weeks 1 and 3, or nivolumab and ipilimumab (ipilimumab, 1 mg/kg, given week 1 only). Patients had surgery 3 to 7 days following cycle 2. Main Outcomes and Measures: Safety and volumetric response determined using bidirectional measurements. Secondary end points included pathologic and objective response, progression-free survival (PFS), and overall survival. Multiplex immunofluorescence was used to evaluate primary tumor immune markers. Results: Fourteen patients were randomized to nivolumab (N) and 15 patients to nivolumab/ipilimumab (N+I) (mean [SD] age, 62 [12] years; 18 men [62%] and 11 women [38%]). The most common subsite was oral tongue (n = 16). Baseline clinical staging included patients with T2 (n = 20) or greater (n = 9) T stage and 17 patients (59%) with node-positive disease. Median time from cycle 1 to surgery was 19 days (range, 7-21 days); there were no surgical delays. There were toxic effects at least possibly related to study treatment in 21 patients, including grade 3 to 4 events in 2 (N), and 5 (N+I) patients. One patient died of conditions thought unrelated to study treatment (postoperative flap failure, stroke). There was evidence of response in both the N and N+I arms (volumetric response 50%, 53%; pathologic downstaging 53%, 69%; RECIST response 13%, 38%; and pathologic response 54%, 73%, respectively). Four patients had major/complete pathologic response greater than 90% (N, n = 1; N+I, n = 3). With 14.2 months median follow-up, 1-year progression-free survival was 85% and overall survival was 89%. Conclusions and Relevance: Treatment with N and N+I was feasible prior to surgical resection. We observed promising rates of response in both arms, supporting further neoadjuvant studies with these agents. Trial Registration: ClinicalTrials.gov Identifier: NCT02919683.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Ipilimumab/administración & dosificación , Neoplasias de la Boca/tratamiento farmacológico , Nivolumab/uso terapéutico , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Ipilimumab/efectos adversos , Masculino , Persona de Mediana Edad , Neoplasias de la Boca/mortalidad , Neoplasias de la Boca/patología , Terapia Neoadyuvante , Nivolumab/administración & dosificación , Nivolumab/efectos adversos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Carcinoma de Células Escamosas de Cabeza y Cuello/mortalidad , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
18.
Cell ; 182(3): 655-671.e22, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32603654

RESUMEN

Checkpoint blockade with antibodies specific for the PD-1 and CTLA-4 inhibitory receptors can induce durable responses in a wide range of human cancers. However, the immunological mechanisms responsible for severe inflammatory side effects remain poorly understood. Here we report a comprehensive single-cell analysis of immune cell populations in colitis, a common and severe side effect of checkpoint blockade. We observed a striking accumulation of CD8 T cells with highly cytotoxic and proliferative states and no evidence of regulatory T cell depletion. T cell receptor (TCR) sequence analysis demonstrated that a substantial fraction of colitis-associated CD8 T cells originated from tissue-resident populations, explaining the frequently early onset of colitis symptoms following treatment initiation. Our analysis also identified cytokines, chemokines, and surface receptors that could serve as therapeutic targets for colitis and potentially other inflammatory side effects of checkpoint blockade.


Asunto(s)
Linfocitos T CD8-positivos/citología , Antígeno CTLA-4/inmunología , Colitis/metabolismo , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inmunoterapia/efectos adversos , Células Mieloides/metabolismo , Receptores de Quimiocina/metabolismo , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Antígeno CTLA-4/metabolismo , Quimiocinas/metabolismo , Colitis/tratamiento farmacológico , Colitis/genética , Colitis/inmunología , Citocinas/metabolismo , Citometría de Flujo , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Melanoma/genética , Melanoma/inmunología , Melanoma/metabolismo , Familia de Multigenes , Células Mieloides/citología , RNA-Seq , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Receptores CXCR6/genética , Receptores CXCR6/metabolismo , Receptores de Quimiocina/genética , Análisis de la Célula Individual , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/metabolismo
19.
Mol Cell ; 78(6): 1096-1113.e8, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32416067

RESUMEN

BET bromodomain inhibitors (BBDIs) are candidate therapeutic agents for triple-negative breast cancer (TNBC) and other cancer types, but inherent and acquired resistance to BBDIs limits their potential clinical use. Using CRISPR and small-molecule inhibitor screens combined with comprehensive molecular profiling of BBDI response and resistance, we identified synthetic lethal interactions with BBDIs and genes that, when deleted, confer resistance. We observed synergy with regulators of cell cycle progression, YAP, AXL, and SRC signaling, and chemotherapeutic agents. We also uncovered functional similarities and differences among BRD2, BRD4, and BRD7. Although deletion of BRD2 enhances sensitivity to BBDIs, BRD7 loss leads to gain of TEAD-YAP chromatin binding and luminal features associated with BBDI resistance. Single-cell RNA-seq, ATAC-seq, and cellular barcoding analysis of BBDI responses in sensitive and resistant cell lines highlight significant heterogeneity among samples and demonstrate that BBDI resistance can be pre-existing or acquired.


Asunto(s)
Resistencia a Antineoplásicos/genética , Proteínas/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Azepinas/farmacología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos NOD , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Triazoles/farmacología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo
20.
Nat Commun ; 11(1): 2350, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32393766

RESUMEN

BET inhibitors are promising therapeutic agents for the treatment of triple-negative breast cancer (TNBC), but the rapid emergence of resistance necessitates investigation of combination therapies and their effects on tumor evolution. Here, we show that palbociclib, a CDK4/6 inhibitor, and paclitaxel, a microtubule inhibitor, synergize with the BET inhibitor JQ1 in TNBC lines. High-complexity DNA barcoding and mathematical modeling indicate a high rate of de novo acquired resistance to these drugs relative to pre-existing resistance. We demonstrate that the combination of JQ1 and palbociclib induces cell division errors, which can increase the chance of developing aneuploidy. Characterizing acquired resistance to combination treatment at a single cell level shows heterogeneous mechanisms including activation of G1-S and senescence pathways. Our results establish a rationale for further investigation of combined BET and CDK4/6 inhibition in TNBC and suggest novel mechanisms of action for these drugs and new vulnerabilities in cells after emergence of resistance.


Asunto(s)
Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Resistencia a Antineoplásicos , Proteínas/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Azepinas/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Clonales , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , ADN de Neoplasias/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones , Modelos Biológicos , Mutación/genética , Paclitaxel/farmacología , Piperazinas/farmacología , Ploidias , Proteínas/metabolismo , Piridinas/farmacología , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Resultado del Tratamiento , Triazoles/farmacología , Neoplasias de la Mama Triple Negativas/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...