Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2405084, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962943

RESUMEN

The process of drug discovery and pre-clinical testing is currently inefficient, expensive, and time-consuming. Most importantly, the success rate is unsatisfactory, as only a small percentage of tested drugs are made available to oncological patients. This is largely due to the lack of reliable models that accurately predict drug efficacy and safety. Even animal models often fail to replicate human-specific pathologies and human body's complexity. These factors, along with ethical concerns regarding animal use, urge the development of suitable human-relevant, translational in vitro models.

2.
Cells ; 13(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38607064

RESUMEN

The global fall in male fertility is a complicated process driven by a variety of factors, including environmental exposure, lifestyle, obesity, stress, and aging. The availability of assisted reproductive technology (ART) has allowed older couples to conceive, increasing the average paternal age at first childbirth. Advanced paternal age (APA), most often considered male age ≥40, has been described to impact several aspects of male reproductive physiology. In this prospective cohort study including 200 normozoospermic patients, 105 of whom were ≤35 years (non-APA), and 95 of whom were ≥42 years (APA), we assessed the impact of paternal age on different endpoints representative of sperm quality and cryopreservation tolerance. Non-APA patients had superior fresh semen quality; DNA fragmentation was notably increased in APA as compared to non-APA individuals (21.7% vs. 15.4%). Cryopreservation further increased the DNA fragmentation index in APA (26.7%) but not in non-APA patients. Additionally, APA was associated with increased mtDNAcn in both fresh and frozen/thawed sperm, which is indicative of poorer mitochondrial quality. Cryopreservation negatively impacted acrosome integrity in both age groups, as indicated by reduced incidences of unreacted acrosome in relation to fresh counterparts in non-APA (from 71.5% to 57.7%) and APA patients (from 75% to 63%). Finally, cryopreservation significantly reduced the phosphorylation status of proteins containing tyrosine residues in sperm from young males. Therefore, the present findings shed light on the effects of paternal age and cryopreservation on sperm quality and serve as valuable new parameters to improve our understanding of the mechanisms underlying sperm developmental competence that are under threat in current ART practice.


Asunto(s)
Edad Paterna , Análisis de Semen , Humanos , Masculino , Estudios Prospectivos , Semen , Motilidad Espermática/fisiología , Espermatozoides/fisiología , Criopreservación
3.
Cells ; 12(19)2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37830563

RESUMEN

In the literature, there is a well-known correlation between poor semen quality and DNA sperm integrity, which can turn into negative outcomes in terms of embryo development and clinical pregnancy. Sperm selection plays a pivotal role in clinical practice, and the most widely used methods are mainly based on sperm motility and morphology. The cumulus oophorus complex (COC) during natural fertilization represents a barrier that spermatozoa must overcome to reach the zona pellucida and fertilize the oocyte. Spermatozoa that can pass through the COC have better structural and metabolic characteristics as well as enhanced acrosome reaction (AR). The present study aimed to evaluate the exposure of sperm to cumulus cell secretome during swim-up treatment (SUC) compared with the routinely used swim-up method (SU). To determine the effectiveness of this method, biological factors critical for the ability of sperm to fertilize an oocyte, including capacitation, AR, tyrosine phosphorylation signature, DNA integrity, and mitochondrial functionality, were assessed. The SUC selection assures recovery of high-quality spermatozoa, with enhanced mitochondrial functionality and motility compared with both SU-selected and unselected (U) sperm. Furthermore, using this modified swim-up procedure, significantly reduced sperm DNA damage (p < 0.05) was detected. In conclusion, the SUC approach is a more physiological and integrated method for sperm selection that deserves further investigation for its translation into clinical practice.


Asunto(s)
Células del Cúmulo , Interacciones Espermatozoide-Óvulo , Femenino , Masculino , Humanos , Interacciones Espermatozoide-Óvulo/fisiología , Células del Cúmulo/metabolismo , Análisis de Semen , Secretoma , Capacitación Espermática/fisiología , Motilidad Espermática/fisiología , Semen/metabolismo , Espermatozoides/metabolismo , ADN/metabolismo
4.
Biomed Pharmacother ; 162: 114679, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37068332

RESUMEN

Colorectal cancer (CRC) is the second most common cause of cancer death, leading to almost 1 million deaths per year. Despite constant progress in surgical and therapeutic protocols, the 5-year survival rate of advanced CRC patients remains extremely poor. Colorectal Cancer Stem Cells (CRC-CSCs) are endowed with unique stemness-related properties responsible for resistance, relapse and metastasis. The development of novel therapeutics able to tackle CSCs while avoiding undesired toxicity is a major need for cancer treatment. Natural products are a large reservoir of unexplored compounds with possible anticancer bioactivity, sustainability, and safety. The family of meroterpenoids derived from sponges share interesting bioactive properties. Bioassay-guided fractionation of a meroterpenoids extract led to the isolation of three compounds, all cytotoxic against several cancer cell lines: Metachromins U, V and W. In this study, we evaluated the anticancer potential of the most active one, Metachromins V (MV), on patient-derived CRC-CSCs. MV strongly impairs CSCs-viability regardless their mutational background and the cytotoxic effect is maintained on therapy-resistant metastatic CSCs. MV affects cell cycle progression, inducing a block in G2 phase in all the cell lines tested and more pronouncedly in CRC-CSCs. Moreover, MV triggers an important reorganization of the cytoskeleton and a strong reduction of Rho GTPases expression, impairing CRC-CSCs motility and invasion ability. By Proteomic analysis identified a potential molecular target of MV: CCAR1, that regulates apoptosis under chemotherapy treatments and affect ß-catenin pathway. Further studies will be needed to confirm and validate these data in in vivo experimental models.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Humanos , Proteómica , Línea Celular Tumoral , Recurrencia Local de Neoplasia/patología , Neoplasias Colorrectales/patología , Antineoplásicos/farmacología , Células Madre Neoplásicas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo
5.
Front Genet ; 14: 1062326, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36777727

RESUMEN

Primary ciliary dyskinesia (PCD) is an inherited autosomal-recessive disorder characterized by abnormal ciliary motion, due to a defect in ciliary structure and/or function. This genetic condition leads to recurrent upper and lower respiratory infections, bronchiectasis, laterality defect, and subfertility. Male infertility is often associated with PCD, since the ultrastructure of the axoneme in the sperm tail is similar to that of the motile cilia of respiratory cells. We present the first reported case of a male patient from a non-consanguineous Italian family who exhibited a severe form of asthenozoospermia factor infertility but no situs inversus and absolutely no signs of the clinical respiratory phenotype, the proband being a professional basketball player. Whole-exome sequencing (WES) has identified a homozygote mutation (CCDC103 c.461 A>C, p.His154Pro) in the proband, while his brother was a heterozygous carrier for this mutation. Morphological and ultrastructural analyses of the axoneme in the sperm flagellum demonstrated the complete loss of both the inner and outer dynein arms (IDA and ODA, respectively). Moreover, immunofluorescence of DNAH1, which is used to check the assembly of IDA, and DNAH5, which labels ODA, demonstrated that these complexes are absent along the full length of the flagella in the spermatozoa from the proband, which was consistent with the IDA and ODA defects observed. Noteworthy, TEM analysis of the axoneme from respiratory cilia showed that dynein arms, although either IDAs and/or ODAs seldom missing on some doublets, are still partly present in each observed section. This case reports the total sperm immotility associated with the CCDC103 p.His154Pro mutation in a man with a normal respiratory phenotype and enriches the variant spectrum of ccdc103 variants and the associated clinical phenotypes in PCD, thus improving counseling of patients about their fertility and possible targeted treatments.

6.
Histol Histopathol ; 38(8): 849-863, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36661064

RESUMEN

Embryo implantation is a complex and highly coordinated process that involves an intricate network of factors establishing intimate contact at the maternal-fetal interface. Knowledge of the human implantation process is compromised by both ethical issues, which do not allow the study of this process in vivo, and by the accuracy and reproducibility of in vitro models of human endometrium. Effective and reliable embryo implantation models are, therefore, necessary to mimic the molecular event cascade that occurs in vivo. 3D models are considered a new step to foster precision medicine and an advanced tool for the study of endometrial biology, endometrium associated diseases and to understand the complex mechanisms surrounding endometrium-embryo crosstalk. In this review we explore the various methods by which 3D cultures of endometrium and trophoblast can be created, exploring targets and applications of these in vitro models.


Asunto(s)
Implantación del Embrión , Trofoblastos , Femenino , Humanos , Reproducibilidad de los Resultados , Endometrio
7.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36555195

RESUMEN

Endocrine disrupting chemicals (EDCs) are compounds that interfere with the synthesis, transport and binding action of hormones responsible for reproduction and homeostasis. Some EDCs compounds are activators of Taste bitter Receptors, a subclass of taste receptors expressed in many extraoral locations, including sperm and follicular somatic cells. This makes TAS2Rs attractive molecules to study and investigate to shed light on the effect of EDCs on female reproduction and fertility. This study aims to assess the effect of selected EDCs [namely Biochanin A (BCA), caffeine, Daidzein, Genistein and Isoflavone] on hGL5, an immortalized cell line exhibiting characteristics coherent with primary follicular granulosa cells. After demonstrating that this model expresses all the TAS2Rs (TAS2R3, TAS2R4, TAS2R14, TAS2R19, TAS2R43) specifically expressed by the primary human granulosa cells, we demonstrated that BCA and caffeine significantly affect mitochondrial footprint and intracellular lipid content, indicating their contribution in steroidogenesis. Our results showed that bitter taste receptors may be involved in steroidogenesis, thus suggesting an appealing mechanism by which these compounds affect the female reproductive system.


Asunto(s)
Disruptores Endocrinos , Gusto , Humanos , Masculino , Femenino , Disruptores Endocrinos/toxicidad , Receptores Acoplados a Proteínas G/metabolismo , Cafeína/farmacología , Semen/metabolismo , Células de la Granulosa/metabolismo
8.
Cells ; 11(17)2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36078041

RESUMEN

Despite the major target of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, being the respiratory system, clinical evidence suggests that the male reproductive system may represent another viral target organ. Revealing the effect of SARS-CoV-2 infection on testis and sperm is a priority for reproductive biology, as well as for reproductive medicine. Here, we confirmed that the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) is highly expressed on human testis and ejaculated sperm; moreover, we provide evidence for the expression of the co-receptors transmembrane protease/serine (TMPRSS2), Basigin (BSG), and Catepsin L (CTSL). Human sperm were readily infected, both in vivo and in vitro, by SARS-CoV-2, as demonstrated by confocal and electron microscopy. The demonstration that the seminiferous epithelium and sperm support SARS-CoV-2 viral replication suggests the possibility that the spermatogenetic process may be detrimentally affected by the virus, and at the same time, supports the need to implement safety measures and guidelines to ensure specific care in reproductive medicine.


Asunto(s)
COVID-19 , Humanos , Masculino , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2 , Semen/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo
9.
Cells ; 11(9)2022 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-35563737

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may affect female reproductive health. Here, we investigated the potential of SARS-CoV-2 to infect the follicular microenvironment, in particular granulosa (GCs) and cumulus cells (CCs), thus providing evidence for a productive infection. GCs and CCs were recovered from women (n = 25) who underwent in vitro fertilization at the Assisted Reproductive Unit, Siena University Hospital. Follicular ovarian cells were co-cultured with SARS-CoV-2 and then analyzed by qPCR, immunofluorescence (IF), western blot (WB) and transmission electron microscopy (TEM). In addition, cell culture supernatant was used to infect VERO6 cells. We demonstrated the expression of cell host factors ACE2, TRPMSS2, BSG and CTSL, which are pivotal for the virus life cycle. Cultured GCs and CCs incubated with SARS-CoV-2 revealed productive SARS-CoV-2 infection at 24 h, 48 h and 72 h post-adsorption. Indeed, SARS-CoV-2 RNA, spike and nucleocapsid proteins were detected in GCs and CCs, and their cell culture supernatant successfully infected the standard VERO E6 cells. Finally, TEM showed full-size virions attached to the membrane and located inside the cytoplasm. This in vitro study reveals the susceptibility of human ovarian cells to SARS-CoV-2 infection, suggesting a potential detrimental effect of COVID-19 infection on female human fertility.


Asunto(s)
COVID-19 , Animales , Chlorocebus aethiops , Femenino , Fertilidad , Humanos , ARN Viral , SARS-CoV-2 , Células Vero
10.
Cells ; 10(11)2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34831350

RESUMEN

Bitter taste receptors (TAS2RS) expression is not restricted to the oral cavity and the presence of these receptors in the male reproductive system and sperm provides insights into their possible role in human reproduction. To elucidate the potential role of TAS2Rs in the female reproductive system, we investigated the expression and localization of bitter taste receptors and the components of signal transduction cascade involved in the pathway of taste receptors in somatic follicular cells obtained from women undergoing assisted reproductive techniques. We found that TAS2R genes are expressed in both cumulus (CCs) and granulosa (GCs) cells, with TAS2R14 being the most highly expressed bitter receptor subtype. Interestingly, a slight increase in the expression of TAS2R14 and TAS2R43 was shown in both GCs and CCs in young women (p < 0.05), while a negative correlation may be established between the number of oocytes collected at the pickup and the expression of TAS2R43. Regarding α-gustducin and α-transducin, two Gα subunits expressed in the taste buds on the tongue, we provide evidence for their expression in CCs and GCs, with α-gustducin showing two additional isoforms in GCs. Finally, we shed light on the possible downstream transduction pathway initiated by taste receptor activation in the female reproductive system. Our study, showing for the first time the expression of taste receptors in the somatic ovarian follicle cells, significantly extends the current knowledge of the biological role of TAS2Rs for human female fertility.


Asunto(s)
Células del Cúmulo/metabolismo , Fertilidad/fisiología , Células de la Granulosa/metabolismo , Gusto , Adulto , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Mapas de Interacción de Proteínas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Gusto/genética
11.
Tissue Cell ; 73: 101656, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34634636

RESUMEN

Embryo implantation occurs during a short period of time, the implantation window, in the mid-secretory phase of the menstrual cycle. The cross-talk between the endometrium and the embryo, at the stage of blastocyst, is a necessary condition for successful implantation. Till now, no single molecule or receptor has been identified to play an essential role on embryo implantation but a huge number of mediators, including cytokines, lipids, adhesion molecules, growth factors, and others, are reported to support the establishment of pregnancy. Therefore, the aim of this review is not only to describe the different actors involved in the implantation process, but also to try to characterize the relationships between these factors as well as their time-regulated activation. Moreover, the availability of in vitro culture systems to study the interactions between embryo and endometrium as well as the paracrine communication regulated by exosomal vesicles will be investigated, as an innovative approach for a more precise characterization of the interactions between the different molecules involved in this process. The in-depth knowledge of all these complex mechanisms will allow to address the reasons of implantation failure and infertility, thus providing new avenues for promoting the successful establishment of a pregnancy.


Asunto(s)
Implantación del Embrión/fisiología , Endometrio/fisiología , Animales , Vesículas Extracelulares/metabolismo , Femenino , Humanos , Sistema Inmunológico/metabolismo , Modelos Biológicos , Organoides/metabolismo , Embarazo
12.
Antioxidants (Basel) ; 11(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35052514

RESUMEN

Despite its widespread use, sperm cryopreservation induces serious detrimental alterations in sperm function; indeed, it is commonly associated with decreased sperm viability and motility, and DNA fragmentation. Mechanisms of human sperm cryodamage are thought to be multifactorial, but oxidative stress seems to have a prominent role. A huge amount of data supported the cryoprotective effect of different antioxidants able to minimize the detrimental effects of reactive oxygen species (ROS) and improve the quality of spermatozoa. Among others, myo-inositol is one of the most powerful and has been reported to be effective in improving sperm quality and motility when used both in vivo and in vitro. This study aimed to determine the in vitro impact of myo-inositol in ameliorating sperm oxidative status during sperm cryopreservation. In particular, we demonstrated a significant improvement of sperm parameters (vitality and motility) when myo-inositol was added after sperm thawing (p < 0.05). Moreover, we showed that myo-inositol induces a significant increase in oxygen consumption, the main index of oxidative phosphorylation efficiency and ATP production. Finally, by means of 2D-electrophoresis, we demonstrated a significant decrease in the level of carbonyl groups, the main structural changes occurring in conditions of oxidative stress (p < 0.05). In conclusion, the sperm cryopreservation procedure we developed, assuring the reduction of ROS-induced sperm modifications, may improve the in vitro procedure currently used in ART laboratory for sperm cryostorage.

13.
Cancers (Basel) ; 11(8)2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31366089

RESUMEN

PTEN is one of the most frequently inactivated tumor suppressor genes in cancer. Loss or variation in PTEN gene/protein levels is commonly observed in a broad spectrum of human cancers, while germline PTEN mutations cause inherited syndromes that lead to increased risk of tumors. PTEN restrains tumorigenesis through different mechanisms ranging from phosphatase-dependent and independent activities, subcellular localization and protein interaction, modulating a broad array of cellular functions including growth, proliferation, survival, DNA repair, and cell motility. The main target of PTEN phosphatase activity is one of the most significant cell growth and pro-survival signaling pathway in cancer: PI3K/AKT/mTOR. Several shreds of evidence shed light on the critical role of PTEN in normal and cancer stem cells (CSCs) homeostasis, with its loss fostering the CSC compartment in both solid and hematologic malignancies. CSCs are responsible for tumor propagation, metastatic spread, resistance to therapy, and relapse. Thus, understanding how alterations of PTEN levels affect CSC hallmarks could be crucial for the development of successful therapeutic approaches. Here, we discuss the most significant findings on PTEN-mediated control of CSC state. We aim to unravel the role of PTEN in the regulation of key mechanisms specific for CSCs, such as self-renewal, quiescence/cell cycle, Epithelial-to-Mesenchymal-Transition (EMT), with a particular focus on PTEN-based therapy resistance mechanisms and their exploitation for novel therapeutic approaches in cancer treatment.

14.
Nutrients ; 10(6)2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29912157

RESUMEN

Intestinal magnesium (Mg) uptake is essential for systemic Mg homeostasis. Colon cells express the two highly homologous transient receptor potential melastatin type (TRPM) 6 and 7 Mg2+ channels, but their precise function and the consequences of their mutual interaction are not clear. To explore the functional role of TRPM6 and TRPM7 in the colon, we used human colon cell lines that innately express both channels and analyzed the functional consequences of genetic knocking-down, by RNA interference, or pharmacological inhibition, by NS8593, of either channel. TRPM7 silencing caused an increase in Mg2+ influx, and correspondingly enhanced cell proliferation and migration, while downregulation of TRPM6 did not affect significantly either Mg2+ influx or cell proliferation. Exposure to the specific TRPM6/7 inhibitor NS8593 reduced Mg2+ influx, and consequently cell proliferation and migration, but Mg supplementation rescued the inhibition. We propose a model whereby in colon cells the functional Mg2+ channel at the plasma membrane may consist of both TRPM7 homomers and TRPM6/7 heteromers. A different expression ratio between the two proteins may result in different functional properties. Altogether, our findings confirm that TRPM6 cannot be replaced by TRPM7, and that TRPM6/7 complexes and TRPM6/7-mediated Mg2+ influx are indispensable in human epithelial colon cells.


Asunto(s)
Colon/citología , Colon/metabolismo , Células Epiteliales/fisiología , Magnesio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Canales Catiónicos TRPM/metabolismo , Línea Celular Tumoral , Humanos , Mucosa Intestinal/citología , Proteínas Serina-Treonina Quinasas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales Catiónicos TRPM/genética
15.
Inflamm Bowel Dis ; 24(10): 2198-2210, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29788266

RESUMEN

Background: Magnesium (Mg) is essential for human health and is absorbed mainly in the intestine. In view of the likely occurrence of an Mg deficit in inflammatory bowel disease (IBD) and the documented role of Mg in modulating inflammation, the present study addresses whether Mg availability can affect the onset and progression of intestinal inflammation. Methods: To study the correlation between Mg status and disease activity, we measured magnesemia by atomic absorption spectroscopy in a cohort of IBD patients. The effects of dietary Mg modulation were assessed in a murine model of dextran sodium sulfate (DSS)-induced colitis by monitoring magnesemia, weight, fecal occult blood, diarrhea, colon length, and histology. Expression of the transient receptor potential melastatin (TRPM) 6 channel was assessed by real-time reverse transcription polymerase chain reaction and immunohistochemistry in murine colon tissues. The effect of Mg on epithelial barrier formation/repair was evaluated in human colon cell lines. Results: Inflammatory bowel disease patients presented with a substantial Mg deficit, and serum Mg levels were inversely correlated with disease activity. In mice, an Mg-deficient diet caused hypomagnesemia and aggravated DSS-induced colitis. Colitis severely compromised intestinal Mg2+ absorption due to mucosal damage and reduction in TRPM6 expression, but Mg supplementation resulted in better restoration of mucosal integrity and channel expression. Conclusions: Our results highlight the importance of evaluating and correcting magnesemia in IBD patients. The murine model suggests that Mg supplementation may represent a safe and cost-effective strategy to reduce inflammation and restore normal mucosal function.


Asunto(s)
Colitis Ulcerosa/complicaciones , Colitis/prevención & control , Enfermedad de Crohn/complicaciones , Dieta , Hipocalcemia/metabolismo , Deficiencia de Magnesio/congénito , Magnesio/administración & dosificación , Canales Catiónicos TRPM/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Estudios de Casos y Controles , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/patología , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/fisiopatología , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/fisiopatología , Sulfato de Dextran/toxicidad , Femenino , Estudios de Seguimiento , Humanos , Hipocalcemia/etiología , Hipocalcemia/patología , Magnesio/metabolismo , Deficiencia de Magnesio/etiología , Deficiencia de Magnesio/metabolismo , Deficiencia de Magnesio/patología , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Pronóstico , Canales Catiónicos TRPM/genética , Adulto Joven
16.
Chem Res Toxicol ; 29(3): 317-22, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26918850

RESUMEN

Magnesium is directly involved in the control of cell growth and survival, but its role in cancer biology and therapy is multifaceted; in particular, it is highly controversial whether magnesium levels can affect therapy outcomes. Here we investigated whether magnesium availability can modulate cellular responses to the widely used chemotherapeutic doxorubicin. We used an in vitro model consisting of mammary epithelial HC11 cells and found that high magnesium availability was correlated with diminished sensitivity both in cells chronically adapted to high magnesium concentrations and in acutely magnesium-supplemented cells. This decrease in sensitivity resulted from reduced intracellular doxorubicin accumulation in the face of a similar drug uptake rate. We observed that high-magnesium conditions caused a decrease in intracellular drug retention by altering drug lysosomal sequestration and trafficking. In our model, magnesium supplementation correspondingly modulated expression of the TRPM7 channel, which is known to control cytoskeletal organization and dynamics and may be involved in the proposed mechanism. Our findings suggest that magnesium supplementation in hypomagnesemic cancer patients may hinder response to therapy.


Asunto(s)
Antibióticos Antineoplásicos/metabolismo , Antibióticos Antineoplásicos/farmacología , Doxorrubicina/metabolismo , Doxorrubicina/farmacología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Magnesio/farmacología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Células MCF-7 , Proteínas Serina-Treonina Quinasas/metabolismo , Relación Estructura-Actividad , Canales Catiónicos TRPM/metabolismo
17.
Biochem Biophys Res Commun ; 454(4): 572-5, 2014 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-25450695

RESUMEN

Magnesium is well established as a fundamental factor that regulates cell proliferation. However, the molecular mechanisms linking mitogenic signals, extracellular magnesium availability and intracellular effectors are still largely unknown. In the present study we sought to determine whether EGF regulates magnesium homeostasis in normal HC11 mammary epithelial cells. To this end, we measured Mg(2+) and Ca(2+) fluxes by confocal imaging in live cells loaded with specific fluorescent ion indicators (Mag-Fluo-4 and Fluo-4, respectively). EGF stimulation induces a rapid and sustained increase in intracellular Mg(2+), concomitantly with a rise in intracellular calcium. The increase in intracellular Mg(2+) derives from an influx from the extracellular compartment, and does not depend on Ca(2+). On the contrary, the increase in intracellular Ca(2+) derives from intracellular stores, and is impaired in the absence of extracellular magnesium. Inhibition of the EGF receptor tyrosine kinase by Tyrphostin AG1478 markedly inhibits EGF-induced Mg(2+) and Ca(2+) signals. These findings demonstrate that not only does Mg(2+) influx represent an important step in the physiological response of epithelial cells to EGF, but unexpectedly the EGF-induced Mg(2+) influx is essential for the Ca(2+) signal to occur.


Asunto(s)
Factor de Crecimiento Epidérmico/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Magnesio/metabolismo , Animales , Células Cultivadas , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Femenino , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...