Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3020, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37230982

RESUMEN

The origins of wound myofibroblasts and scar tissue remains unclear, but it is assumed to involve conversion of adipocytes into myofibroblasts. Here, we directly explore the potential plasticity of adipocytes and fibroblasts after skin injury. Using genetic lineage tracing and live imaging in explants and in wounded animals, we observe that injury induces a transient migratory state in adipocytes with vastly distinct cell migration patterns and behaviours from fibroblasts. Furthermore, migratory adipocytes, do not contribute to scar formation and remain non-fibrogenic in vitro, in vivo and upon transplantation into wounds in animals. Using single-cell and bulk transcriptomics we confirm that wound adipocytes do not convert into fibrogenic myofibroblasts. In summary, the injury-induced migratory adipocytes remain lineage-restricted and do not converge or reprogram into a fibrosing phenotype. These findings broadly impact basic and translational strategies in the regenerative medicine field, including clinical interventions for wound repair, diabetes, and fibrotic pathologies.


Asunto(s)
Cicatriz , Piel , Animales , Cicatriz/patología , Piel/patología , Miofibroblastos/patología , Adipocitos/patología , Cicatrización de Heridas , Fibroblastos/patología , Fibrosis
2.
PLoS Biol ; 19(2): e3001132, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33596206

RESUMEN

[This corrects the article DOI: 10.1371/journal.pbio.3000708.].

3.
PLoS Biol ; 18(12): e3000708, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33290409

RESUMEN

Regulation of quiescence and cell cycle entry is pivotal for the maintenance of stem cell populations. Regulatory mechanisms, however, are poorly understood. In particular, it is unclear how the activity of single stem cells is coordinated within the population or if cells divide in a purely random fashion. We addressed this issue by analyzing division events in an adult neural stem cell (NSC) population of the zebrafish telencephalon. Spatial statistics and mathematical modeling of over 80,000 NSCs in 36 brain hemispheres revealed weakly aggregated, nonrandom division patterns in space and time. Analyzing divisions at 2 time points allowed us to infer cell cycle and S-phase lengths computationally. Interestingly, we observed rapid cell cycle reentries in roughly 15% of newly born NSCs. In agent-based simulations of NSC populations, this redividing activity sufficed to induce aggregated spatiotemporal division patterns that matched the ones observed experimentally. In contrast, omitting redivisions leads to a random spatiotemporal distribution of dividing cells. Spatiotemporal aggregation of dividing stem cells can thus emerge solely from the cells' history.


Asunto(s)
Diferenciación Celular/fisiología , Células-Madre Neurales/metabolismo , Telencéfalo/crecimiento & desarrollo , Células Madre Adultas/metabolismo , Animales , Ciclo Celular/fisiología , División Celular/fisiología , Proliferación Celular/fisiología , Modelos Teóricos , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Transducción de Señal/fisiología , Telencéfalo/citología , Telencéfalo/metabolismo , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/metabolismo
4.
Nat Commun ; 11(1): 5653, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33159076

RESUMEN

Scars are more severe when the subcutaneous fascia beneath the dermis is injured upon surgical or traumatic wounding. Here, we present a detailed analysis of fascia cell mobilisation by using deep tissue intravital live imaging of acute surgical wounds, fibroblast lineage-specific transgenic mice, and skin-fascia explants (scar-like tissue in a dish - SCAD). We observe that injury triggers a swarming-like collective cell migration of fascia fibroblasts that progressively contracts the skin and form scars. Swarming is exclusive to fascia fibroblasts, and requires the upregulation of N-cadherin. Both swarming and N-cadherin expression are absent from fibroblasts in the upper skin layers and the oral mucosa, tissues that repair wounds with minimal scar. Impeding N-cadherin binding inhibits swarming and skin contraction, and leads to reduced scarring in SCADs and in animals. Fibroblast swarming and N-cadherin thus provide therapeutic avenues to curtail fascia mobilisation and pathological fibrotic responses across a range of medical settings.


Asunto(s)
Cicatriz/metabolismo , Fascia/lesiones , Fibroblastos/metabolismo , Heridas y Lesiones/metabolismo , Adulto , Anciano , Animales , Cadherinas/metabolismo , Movimiento Celular , Cicatriz/fisiopatología , Fascia/citología , Fascia/metabolismo , Femenino , Fibroblastos/citología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Piel/citología , Piel/lesiones , Piel/metabolismo , Piel/fisiopatología , Cicatrización de Heridas , Heridas y Lesiones/fisiopatología , Adulto Joven
5.
Elife ; 72018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-29595471

RESUMEN

Despite the intrinsically stochastic nature of damage, sensory organs recapitulate normal architecture during repair to maintain function. Here we present a quantitative approach that combines live cell-lineage tracing and multifactorial classification by machine learning to reveal how cell identity and localization are coordinated during organ regeneration. We use the superficial neuromasts in larval zebrafish, which contain three cell classes organized in radial symmetry and a single planar-polarity axis. Visualization of cell-fate transitions at high temporal resolution shows that neuromasts regenerate isotropically to recover geometric order, proportions and polarity with exceptional accuracy. We identify mediolateral position within the growing tissue as the best predictor of cell-fate acquisition. We propose a self-regulatory mechanism that guides the regenerative process to identical outcome with minimal extrinsic information. The integrated approach that we have developed is simple and broadly applicable, and should help define predictive signatures of cellular behavior during the construction of complex tissues.


Asunto(s)
Mecanorreceptores/fisiología , Regeneración , Animales , Linaje de la Célula , Microscopía Intravital , Larva , Aprendizaje Automático , Microscopía por Video , Pez Cebra
6.
Cytometry A ; 93(3): 314-322, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29125897

RESUMEN

Proliferating stem cells in the adult body are the source of constant regeneration. In the brain, neural stem cells (NSCs) divide to maintain the stem cell population and generate neural progenitor cells that eventually replenish mature neurons and glial cells. How much spatial coordination of NSC division and differentiation is present in a functional brain is an open question. To quantify the patterns of stem cell divisions, one has to (i) identify the pool of NSCs that have the ability to divide, (ii) determine NSCs that divide within a given time window, and (iii) analyze the degree of spatial coordination. Here, we present a bioimage informatics pipeline that automatically identifies GFP expressing NSCs in three-dimensional image stacks of zebrafish brain from whole-mount preparations. We exploit the fact that NSCs in the zebrafish hemispheres are located on a two-dimensional surface and identify between 1,500 and 2,500 NSCs in six brain hemispheres. We then determine the position of dividing NSCs in the hemisphere by EdU incorporation into cells undergoing S-phase and calculate all pairwise NSC distances with three alternative metrics. Finally, we fit a probabilistic model to the observed spatial patterns that accounts for the non-homogeneous distribution of NSCs. We find a weak positive coordination between dividing NSCs irrespective of the metric and conclude that neither strong inhibitory nor strong attractive signals drive NSC divisions in the adult zebrafish brain. © 2017 International Society for Advancement of Cytometry.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Células-Madre Neurales/citología , Neurogénesis/fisiología , Telencéfalo/citología , Telencéfalo/diagnóstico por imagen , Animales , División Celular/fisiología , Proliferación Celular/fisiología , Proteínas Fluorescentes Verdes/biosíntesis , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...