RESUMEN
The formidable antifungal agent, Amphotericin B, is well-known for its potency; however, its clinical application has been significantly limited due to toxicity and poor solubility. This study aims to address these challenges by developing and evaluating a novel nano-cellulose-based formulation of Amphotericin B to enhance its efficacy. Amphotericin B was encapsulated within cellulose nanofibers at varying ratios to optimize formulation parameters, including drug concentration, particle size, zeta potential, and entrapment efficiency. Notably, a composition ratio of 10:1 of cellulose nanofibers to Amphotericin B achieved an impressive encapsulation efficiency of 96.64â¯%. Subsequent physicochemical characterizations employing techniques such as FTIR, DLS, XRD, and SEM provided insights into structural attributes and interactions within formulation. Controlled and extended-release profiles were observed at various physiological pH levels, with the Korsmeyer-Peppas model showing the highest correlation, indicating predominant drug diffusion. Importantly, nanoformulation demonstrated non-toxicity to A431 cells and human erythrocytes up to a maximum concentration of 20⯵g/ml, as corroborated by MTT and hemolysis assays. Furthermore, antimicrobial susceptibility and efficacy assessments, conducted using agar diffusion and broth micro-dilution methods, revealed enhanced inhibition of Candida albicans growth. The nanoformulation produced a larger zone of inhibition (DIZ) of 19.66â¯mm compared to a DIZ of 16.33â¯mm for Amphotericin B alone. Impressively, the nanoformulation exhibited a minimum inhibitory concentration (MIC) of 25⯵g/ml against Candida albicans, underscoring its heightened efficacy. Additionally, the formulation's ability to improve the targetability and bioavailability of Amphotericin B holds promise for enhancing its antifungal effectiveness while reducing associated toxicity.
RESUMEN
Non-small cell lung cancer comprises up to 85% of lung cancer cases and has a poor prognosis. At present, there are still no effective treatments for this illness. Evidence suggests that the prostaglandin [cyclooxygenase-2 (COX-2)] and leukotriene [lipoxygenase-5 (5-LOX)] pathways are involved in lung cancer carcinogenesis. Therefore, novel agents that target COX-2 and 5-LOX may have therapeutic potential. In the present study, we examined the role of asiatic acid (AA), a triterpenoid saponin, in targeting the protein kinases responsible for lung cancer proliferation and mobility. The experimental data revealed that AA inhibited the growth of lung cancer cells (> 50%) and it significantly impeded the proliferation of lung cancer cells by inhibiting COX-2, which results in downregulation of the phosphotidyl inositol-3 kinase/protein kinase B/mammalian target of rapamycin signaling pathway, leading to an induction of cytotoxic autophagy-mediated apoptosis. Mechanistically, the expression of mitogen-activated protein kinase/extracellular signal-regulated kinase, hypoxia-inducible factor-1 and vascular endothelial growth factor is downregulated by AA, thereby reducing cell mobility and invasion. It also shows negative osmotic fragility on healthy human erythrocytes. It is concluded that AA may be a viable therapeutic drug for non-small cell lung cancer treatment, which opens new opportunities for synthesizing analogues.
RESUMEN
3,5,7-Trihydroxy-2-phenylchromen-4-one (THF) possesses a diverse range of pharmacological activities. Evidence suggests that THF exerts anticancer activity by distinct mechanisms of action. This study explores the anticancer potential of THF in human lung (A549) and skin (A431) cancer cells by employing different antiproliferative assays. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, neutral red uptake, sulphorhodamine B, and cell motility assays were used to confirm the anticancer potential of THF. Cell target-based and quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays were used to explore the effect of THF on the initiation, promotion and progression phase biomarkers of carcinogenesis. THF suppresses the activity of lipoxygenase-5 up to ~40% in both A549 and A431 cells and up to ~50% hyaluronidase activity in A549 cells. qRT-PCR assay reveals that THF inhibits the activity of phosphatidyl inositol-3 kinase/protein kinase B/mammalian target of rapamycin in both cell lines, which is responsible for the initiation of cancer. It also arrests the G2/M phase of the cell cycle in A431 cells and increases the sub-diploid population in both A549 and A431 cell lines which leads to cell death. Annexin V-FITC assay confirmed that THF induces apoptosis and necrosis in A431 and A549 cell lines. Further investigation revealed that THF not only enhances reactive oxygen species production but also modulates mitochondrial membrane potential in both cell lines. It significantly inhibits S-180 tumour formation at 5 and 10 mg/kg bw, i.p. dose. An acute skin toxicity study on mice showed that erythema and edema scores are within the acceptable range, besides acceptable drug-likeness properties and non-toxic effects on human erythrocytes. Conclusively, THF showed potent anticancer activity on skin and lung carcinoma cell lines, suppressed the level of the biomarkers and inhibited tumour growth in mice.
Asunto(s)
Apoptosis , Neoplasias Pulmonares , Neoplasias Cutáneas , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Animales , Ratones , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Células A549 , Regulación hacia Abajo/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Antineoplásicos/farmacologíaRESUMEN
Essential oils are among the most well-known phyto-compounds, and since ancient times, they have been utilized in medicine. Over 100 essential oils have been identified and utilized as therapies for various skin infections and related ailments. While numerous commercial medicines are available in different dosage forms to treat skin diseases, the persisting issues include their side effects, toxicity, and low efficacy. As a result, researchers are seeking novel classes of compounds as substitutes for synthetic drugs, aiming for minimal side effects, no toxicity, and high efficacy. Essential oils have shown promising antimicrobial activity against skin-associated pathogens. This review presents essential knowledge and scientific information regarding essential oil's antimicrobial capabilities against microorganisms that cause skin infections. Essential oils mechanisms against different pathogens have also been explored. Many essential oils exhibit promising activity against various microbes, which has been qualitatively assessed using the agar disc diffusion experiment, followed by determining the minimum inhibitory concentration for quantitative evaluation. It has been observed that Staphylococcus aureus and Candida albicans have been extensively researched in the context of skin-related infections and their antimicrobial activity, including established modes of action. In contrast, other skin pathogens such as Staphylococcus epidermidis, Streptococcus pyogens, Propionibacterium acnes, and Malassezia furfur have received less attention or neglected. This review report provides an updated understanding of the mechanisms of action of various essential oils with antimicrobial properties. This review explores the anti-infectious activity and mode of action of essential against distinct skin pathogens. Such knowledge can be valuable in treating skin infections and related ailments.
Asunto(s)
Aceites Volátiles , Aceites Volátiles/farmacología , Humanos , Piel/microbiología , Piel/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Candida albicans/efectos de los fármacos , Antibacterianos/farmacologíaRESUMEN
Flavonoids, constituting the most extensive category of polyphenols, founds in a variety of plants and comprise over 9000 compounds. Diosmetin, O-methylated flavone (3',5,7-trihydroxy-4'-methoxyflavone) of flavonoid aglycone diosmin have witnessed a significant surge in recent years. Many studies showed that flavonoids induced cytotoxicity in different organ specific cancer types. Thus, current review evaluates the anticancer potential of diosmetin and shed light on its mechanism of action such as cell cycle regulation, apoptosis via both intrinsic and extrinsic pathway, autophagy and tumour progression and metastasis. It also provides comprehensive analysis of different cancer targets and their role in breast, colon, hepatic, gliomas, leukemia, lung, prostate and skin cancer. Combination studies of diosmetin to improve drug sensitivity and reduce toxicity towards normal cells has been also discussed. Besides, in vitro studies, present review also discuss the anticancer potential of diosmetin on xenograft mice model. Different natural sources of diosmetin, limitations, pharmacokinetic analysis and toxicity study also summarized in current review. The emphasis on enhancing solubility and permeability for clinical utility has been thoroughly highlighted with particular attention given to the utilization of nano formulations to overcome existing barriers. At last, in-depth analysis of current challenges and a forward-looking perspective deliberated to address the existing gaps and position it as a promising lead compound for clinical applications in cancer treatment. This discussion is boosted by diosmetin's potential anticancer properties on different cancers, makes valuable candidates in the ongoing quest for effective therapeutic interventions against cancer.
Asunto(s)
Flavonoides , Neoplasias , Transducción de Señal , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Animales , Transducción de Señal/efectos de los fármacos , Flavonoides/farmacología , Flavonoides/uso terapéutico , Progresión de la Enfermedad , Flavonas/farmacología , Flavonas/uso terapéutico , Apoptosis/efectos de los fármacosRESUMEN
BACKGROUND: The genus Costus is the largest genus in the family Costaceae and encompasses about 150 known species. Among these, Costus pictus D. Don (Synonym: Costus mexicanus) is a traditional medicinal herb used to treat diabetes and other ailments. Currently, available treatment options in modern medicine have several adverse effects. Herbal medicines are gaining importance as they are cost-effective and display improved therapeutic effects with fewer side effects. Scientists have been seeking therapeutic compounds in plants, and various in vitro and in vivo studies report Costus pictus D. Don as a potential source in treating various diseases. Phytochemicals with various pharmacological properties of Costus pictus D. Don, viz. anti-cancer, anti-oxidant, diuretic, analgesic, and anti-microbial have been worked out and reported in the literature. OBJECTIVE: The aim of the review is to categorize and summarize the available information on phytochemicals and pharmacological properties of Costus pictus D. Don and suggest outlooks for future research. METHODS: This review combined scientific data regarding the use of Costus pictus D. Don plant for the management of diabetes and other ailments. A systematic search was performed on Costus pictus plant with anti-diabetic, anti-cancer, anti-microbial, anti-oxidant, and other pharmacological properties using several search engines such as Google Scholar, PubMed, Science Direct, Sci-Finder, other online journals and books for detailed analysis. RESULTS: Research data compilation and critical review of the information would be beneficial for further exploration of its pharmacological and phytochemical aspects and, consequently, new drug development. Bioactivity-guided fractionation, isolation, and purification of new chemical entities from the plant as well as pharmacological evaluation of the same will lead to the search for safe and effective novel drugs for better healthcare. CONCLUSION: This review critically summarizes the reports on natural compounds, and different extract of Costus pictus D. Don with their potent anti-diabetic activity along with other pharmacological activity. Since this review has been presented in a very interactive manner showing the geographical region of availability, parts of plant used, mechanism of action and phytoconstituents in different extracts of Costus pictus responsible for particular action, it will be of great importance to the interested readers to focus on the development of the new drug leads for the treatment of diseases.
Asunto(s)
Costus , Hipoglucemiantes , Fitoquímicos , Fitoquímicos/farmacología , Fitoquímicos/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Humanos , Costus/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Animales , Diabetes Mellitus/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/química , Plantas Medicinales/químicaRESUMEN
INTRODUCTION: Hepatocellular carcinoma (HCC) is a common solid cancer and the leading cause of cancer deaths worldwide. Sorafenib is the first drug used to treat HCC but its effectiveness needs to be improved, and it is important to find ways to treat cancer that combine sorafenib with other drugs. Synergistic therapies lower effective drug doses and side effects while enhancing the anticancer effect. PURPOSE: In the present study, the therapeutic potential of sorafenib in combination with escin and its underlying mechanism in targeting liver cancer has been established. STUDY DESIGN/METHODS: The IC50 of sorafenib and escin against HepG2, PLC/PRF5 and Huh7 cell lines were determined using MTT assay. The combination index, dose reduction index, isobologram and concentrations producing synergy were evaluated using the Chou-Talaly algorithm. The sub-effective concentration of sorafenib and escin was selected to analyze cytotoxic synergistic potential. Cellular ROS, mitochondrial membrane potential, annexin V and cell cycle were evaluated using a flow-cytometer, and autophagy biomarkers were determined using western blotting. Moreover, autophagy was knocked down using ATG5 siRNA to confirm its role. A DEN-induced liver cancer rat model was developed to check the synergy of sorafenib and escin. RESULTS: Different concentrations of escin reduced the IC50 of sorafenib in HepG2, PLC/PRF5 and Huh7 cell lines. Chou-Talaly algorithm determined cytotoxic synergistic concentrations of sorafenib and escin in these cell lines. Mechanistically, this combination over-expressed p62 and LC-II, reflecting autophagy block and induced late apoptosis, further reconfirmed by ATG5 knockdown. Sorafenib and escin combination reduced HCC serum biomarker α-feto protein (α-FP) by 1.5 folds. This combination restricted liver weight, tumor number and size, also, conserved morphological features of liver cells. The combination selectively targeted the G0 /G1 phase of cancer cells. CONCLUSION: Escin and sorafenib combination potentially up-regulates p62 to block autophagy to induce late apoptosis in liver cancer cells.
Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratas , Antineoplásicos/farmacología , Apoptosis , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Escina/farmacología , Neoplasias Hepáticas/patología , Proteínas Asociadas a Microtúbulos , Sorafenib/farmacologíaRESUMEN
MicroRNAs (miRNAs) play a crucial role in cancer progression by selectively inducing translational degradation of messenger RNA (mRNA) via sequence-specific interactions with the 3'-untranslated region (3'-UTR). The potential targeting of miRNA has been recognized as a significant avenue for investigating the biological progression of diverse cancer types. Consequently, targeting of pri-miRNA and pre-miRNA by phytochemicals emerges as a viable strategy in the realm of anticancer therapies. Among phytochemicals, triterpenoids have garnered significant recognition for their chemotherapeutic and chemopreventive capabilities in combating multiple cancers. To date, there is a dearth of literature about the molecular interactions between triterpenoids and miRNAs. The primary objective of this investigation is to discern the potential triterpenoids that can function as modulators for specific miRNAs, namely pri-miRNA-19b-2, pre-miR21, microRNA 20b, pri-miRNA-208a, pri-miRNA-378a, pri-miRNA-320b-2, and pri-miRNA-300, achieved through the use of in silico investigations. The study primarily focused on performing drug-likeness, computer-aided toxicity, and pharmacokinetic prediction studies for triterpenoids. Furthermore, molecular docking and simulation techniques were employed to investigate these compounds. The triterpenoids studied were shown to have drug-likeness characteristics, although asiatic acid, lupeol, and pristimerin were able to pass all toxicity tests. Among the triterpenoids that underwent docking, pristimerin had a significant binding energy of -10.9 kcal/mol during its interaction with pri-miR-378a. The stable interaction between the pristimerin and miRNA complex was demonstrated by molecular dynamics simulation. As a result, pristimerin has the potential to act as a modulator of carcinogenic miRNAs, making it a promising candidate for cancer prevention and treatment due to its tailored modulation of miRNA activity.
Asunto(s)
MicroARNs , Neoplasias , Triterpenos Pentacíclicos , Triterpenos , Humanos , Procesamiento Postranscripcional del ARN , Triterpenos/farmacología , Angiogénesis , Simulación del Acoplamiento Molecular , Precursores del ARN/metabolismo , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proliferación CelularRESUMEN
Monoterpenoids, a sub-class of terpenoids, are secondary metabolites frequently extracted from the essential oils of aromatic plants. Their antitumor properties including antiproliferative, apoptotic, antiangiogenic, and antimetastatic effects along with other biological activities have been the subject of extensive study due to their diverse characteristics. In recent years, numerous investigations have been conducted to understand its potential anticancer impacts, specifically focusing on antiproliferative and apoptotic mechanisms. Metastasis, a malignancy hallmark, can exert either protective or destructive influences on tumor cells. Despite this, the potential antimetastatic and antiangiogenic attributes of monoterpenoids need further exploration. This review focuses on specific monoterpenoids, examining their effects on metastasis and relevant signaling pathways. The monoterpenoids exhibit a high level of complexity as natural products that regulate metastatic proteins through various signaling pathways, including phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin, mitogen-activated protein kinase/extracellular signal-regulated kinase/jun N-terminal kinase, nuclear factor kappa B, vascular endothelial growth factor, and epithelial mesenchymal transition process. Additionally, this review delves into the biosynthesis and classification of monoterpenoids, their potential antitumor impacts on cell lines, the plant sources of monoterpenoids, and the current status of limited clinical trials investigating their efficacy against cancer. Moreover, monoterpenoids depict promising potential in preventing cancer metastasis, however, inadequate clinical trials limit their drug usage. State-of-the-art techniques and technologies are being employed to overcome the challenges of utilizing monoterpenoids as an anticancer agent.
Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Monoterpenos/farmacología , Monoterpenos/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológicoRESUMEN
BACKGROUND: Cinchonine is one of the Cinchona alkaloids that is commercially extracted from the Peruvian bark of Cinchona officinalis L. (Family: Rubiaceae). It is also obtained in much lower quantities from other species of Cinchona, such as Cinchona calisaya, Cinchona succirubra, and Cinchona pubescens, and in some other plants, such as Remijia peruviana. Cinchonine has been historically used as an anti-malarial agent. It also has a wide range of other biological properties, including anti-cancer, anti-obesity, anti-inflammatory, anti-parasitic, antimicrobial, anti-platelet aggregation, and anti-osteoclast differentiation. AIM AND OBJECTIVE: This review discusses the pharmacological activity of cinchonine under different experimental conditions, including in silico, in vitro, and in vivo. It also covers the compound's physicochemical properties, toxicological aspects, and pharmacokinetics. METHODOLOGY: A comprehensive literature search was conducted on multiple online databases, such as PubMed, Scopus, and Google Scholar. The aim was to retrieve a wide range of review/research papers and bibliographic sources. The process involved applying exclusion and inclusion criteria to ensure the selection of relevant and high-quality papers. RESULTS: Cinchonine has numerous pharmacological properties, making it a promising compound for various therapeutic applications. It induces anticancer activity by activating caspase-3 and PARP-1, and triggers the endoplasmic reticulum stress response. It up-regulates GRP78 and promotes the phosphorylation of PERK and ETIF-2α. Cinchonine also inhibits osteoclastogenesis, inhibiting TAK1 activation and suppressing NFATc1 expression by regulating AP-1 and NF-κB. Its potential anti-inflammatory effects reduce the impact of high-fat diets, making it suitable for targeting obesity-related diseases. However, research on cinchonine is limited, and further studies are needed to fully understand its therapeutic potential. Further investigation is needed to ensure its safety and efficacy in clinical applications. CONCLUSION: Overall, this review article explains the pharmacological activity of cinchonine, its synthesis, and physicochemical properties, toxicological aspects, and pharmacokinetics.
RESUMEN
INTRODUCTION: The Ca2+ signaling toolkit is currently under investigation as a potential target for addressing the threat of cancer. A growing body of evidence suggests that calcium signaling plays a crucial role in promoting various aspects of cancer, including cell proliferation, progression, drug resistance, and migration-related activities. Consequently, focusing on these altered Ca2+ transporting proteins has emerged as a promising area of research for cancer treatment. AREAS COVERED: This review highlights the existing research on the role of Ca2+-transporting proteins in cancer progression. It discusses the current studies evaluating Ca2+ channel/transporter/pump blockers, inhibitors, or regulators as potential anticancer drugs. Additionally, the review addresses specific gaps in our understanding of the field that may require further investigation. EXPERT OPINION: Targeting specific Ca2+ signaling cascades could disrupt normal cellular activities, making cancer therapy complex and elusive. Therefore, there is a need for improvements in current Ca2+ signaling pathway focused medicines. While synthetic molecules and plant compounds show promise, they also come with certain limitations. Hence, exploring the framework of targeted drug delivery, structure-rationale-based designing, and repurposing potential drugs to target Ca2+ transporting proteins could potentially lead to a significant breakthrough in cancer treatment.
Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Señalización del Calcio , Calcio/metabolismo , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéuticoRESUMEN
Breast cancer is the second-leading cause of cancer-related death in women and the most often diagnosed malignancy. As the majority of chemotherapeutic medications are associated with recurrence, drug resistance, and side effects, scientists are shifting to beneficial agents for prevention and treatment, such as natural molecules. Myricetin 3-rhamnoside, a natural flavonol glycoside is known for diverse pharmacological activities but fewer reports describe the antiproliferative ability. The study aims to investigate the antiproliferative efficacy and target [hyaluronidase (HYAL) and ornithine decarboxylase (ODC), two poor breast cancer prognostic markers] modulatory potential of myricetin 3-rhamnoside on breast cancer cell lines using cytotoxicity assays and in silico docking, molecular dynamics analysis, cell-free and cell-based test methods. Myricetin 3-rhamnoside significantly retard the growth of MDA-MB-231 cells in SRB (IC50 88.64 ± 7.14 µM) and MTT (56.26 ± 8.50 µM) assay. It suppressed the transition of cells to the S-phase by inducing arrest in the G0/G1 phase with a fold change of 1.10. It shows robust binding interaction with ODC (-7.90 kcal/mol) and HYAL (-9.46 kcal/mol) and inhibits ODC (15.22 ± 2.61 µM) and HYAL (11.92 ± 2.89 µM) activity, but in a cell-based assay, the prominent response was observed against HYAL (21.46 ± 4.03 µM). Besides, it shows a 1.38 fold-down regulation of HYAL and forms a stable complex with HYAL. The binding pocket for myricetin 3-rhamnoside and the simulation pocket during the simulation are identical, indicating that myricetin 3-rhamnoside is actively blocking hyaluronidase. The computational prediction suggests it is a safe molecule. These observations imply that myricetin 3-rhamnoside could be used as a pharmacophore to design and synthesize a novel and safe agent for managing hormone-independent breast cancer.Communicated by Ramaswamy H. Sarma.
RESUMEN
Cathepsin-D (CATD) inhibitors' design and development drawn interest due to their potential therapeutic applications in managing different cancer types, including lung cancer. This study investigated myricitrin, a flavonol-3-O-rhamnoside, for its binding affinity to CATD. Molecular docking experiments revealed a strong binding affinity (-7.8 kcal/mol). Molecular dynamics (MD) simulation confirmed the complex's stability, while enzyme activity studies showed inhibitory concentration (IC50) of 35.14 ± 6.08 µM (in cell-free) and 16.00 ± 3.48 µM (in cell-based) test systems. Expression analysis indicated downregulation of CATD with a fold change of 1.35. Myricitrin demonstrated antiproliferative effects on NCIH-520 cells [IC50: 64.11 µM in Sulphorhodamine B (SRB), 24.44 µM in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)], but did not affect healthy CHANG cells. It also prolonged the G2/M phase (at 10 µM: 1.19-fold; at 100 µM: 1.13-fold) and increased sub-diploid population by 1.35-fold. Based on the analysis done using SwissADME program, it is predicted that myricitrin is not a cytochrome p450s (CYPs) inhibitor, followed the rule of Ghose and found not permeable to the blood-brain barrier (BBB) which suggests it as a safe molecule. In summary, the experimental findings may establish the foundation for myricitrin and its analogues to be used therapeutically in CATD-mediated lung cancer prevention.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Pulmonares , Myrica , Humanos , Myrica/metabolismo , Simulación del Acoplamiento Molecular , Catepsina D/química , Catepsina D/metabolismo , Pulmón/metabolismoRESUMEN
Lung cancer is the most common and lethal cancer worldwide, yet there are no adequate and novel medications to control this illness. Previous reports suggested the potential of protein kinases to target lung cancer by regulating autophagy. This study establishes the role of aescin, a triterpenoid saponin, in targeting protein kinases responsible for lung cancer proliferation and mobility. The experimental data revealed that aescin significantly impedes lung cancer cell proliferation by downregulating protein kinases such as AKT, mTOR, MEK, and ERK. Downregulation of AKT-mTOR may promote a string of events inducing cytotoxic autophagy-mediated apoptosis in the presence of aescin. Besides, aescin decreases mobility and invasion by downregulating HIF-1α and VEGF gene expressions. Moreover, it successfully monitors EGFR gene expression, improves lung histology, and regulates biochemical parameters in a pre-clinical DEN-induced lung cancer model. Aescin was observed to be safe and non-toxic in both in silico toxicity predictions and ex vivo erythrocyte fragility assays. Hence, this study elucidates the molecular mechanism of aescin in targeting protein kinases and suggests that it could be a safer and more viable therapeutic agent for lung cancer treatment.
Asunto(s)
Neoplasias Pulmonares , Saponinas , Triterpenos , Humanos , Escina/farmacología , Escina/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Saponinas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Triterpenos/farmacología , Línea Celular Tumoral , Apoptosis , Serina-Treonina Quinasas TOR/metabolismo , Pulmón/metabolismo , AutofagiaRESUMEN
Lung cancer is still the most frequent cause of cancer-related death, accounting for nearly two million cases yearly. As cancer is a multifactorial disease, developing novel molecular therapeutics that can simultaneously target multiple associated cellular processes has become necessary. Ion channels are diverse regulators of cancer-related processes such as abnormal proliferation, invasion, migration, tumor progression, inhibition of apoptosis, and chemoresistance. Among the various families of ion channels, the transient receptor potential canonical channel family steps out in the context of lung cancer, as several members have been postulated as prognostic markers for lung cancer. Phytochemicals have been found to have health benefits in the treatment of a variety of diseases and disorders. Among phytochemicals, monoterpenes are effective in treating both the early and late stages of cancer. The molecular docking interaction analysis was conducted to evaluate the binding potential of selected monoterpenes with TRPC3, TRPC4, TRPC5, and TRPC6 involved in different phases of carcinogenesis. Amongst the selected monoterpenes, thymoquinone exhibited the highest binding energy of -6.7 kcal/mol against the TRPC4 channel, and all amino acid binding residues were similar to those of the known inhibitor for TRPC4. In addition, molecular-dynamic simulation results parameters, such as RMSD, RMSF, and Rg, indicated that thymoquinone did not impact the protein compactness and exhibited stability during the interaction. The average interaction energy between thymoquinone and TRPC4 protein was -26.85 kJ/mol. In-silico Drug-likeness and ADMET profiling indicated that thymoquinone is a druggable candidate with minimal toxicity. We propose further investigation and evaluation of thymoquinone for lead optimization and drug development.Communicated by Ramaswamy H. Sarma.
Thymoquinone exhibited the highest BE −6.7 kcal/mol against the TRPC4 channel.Thymoquinone passed all drug-likeness parameters.Thymoquinone showed 99.38% of intestinal absorption in ADMET analysis.MD confirms thymoquinone forms stable molecular interaction with TRPC4.
RESUMEN
Combining anti-cancer drugs has been exploited as promising treatment strategy to target lung cancer. Synergistic chemotherapies increase anti-cancer effect and reduce effective drug doses and side effects. In this study, therapeutic potential of escin in combination with sorafenib has been explored. 3-(4,5-Dimethylthiazol-2-yl)-2 5-diphenyltetrazolium bromide assay was used to calculate IC50 values. The synergy was evaluated using Chou-Talaly algorithm. Cellular reactive oxygen species, mitochondrial membrane potential, annexin V, and cell-cycle studies were done by flow-cytometer, and autophagy biomarkers expression were determined using western blotting. Moreover, autophagy was knocked down using ATG5 siRNA to confirm its role, diethylnitrosamine-induced lung cancer model was used to check the synergy of sorafenib/escin. Escin significantly reduced the IC50 of sorafenib in A549 and NCIH460 cells. The combination of sorafenib/escin produced a 2.95 and 5.45 dose reduction index for sorafenib in A549 and NCI-H460 cells. The combination of over-expressed p62 and LC3-II reflects autophagy block-mediated late apoptosis. This phenomenon was reconfirmed by ATG5 knockdown. This combination also selectively targeted G0/G1 phase of cancer cells. In in vivo study, the combination reduced tumour load and lower elevated serum biochemical parameters. The combination of sorafenib/escin synergistically inhibits autophagy to induce late apoptosis in lung cancer cells' G0/G1 phase.
RESUMEN
Flavonoids are among the largest groups of secondary metabolites. Studies suggest that dietary intake of flavonoids reduces the risk of cancer. 3,5,7-trihydroxyflavone (THF) belongs to the flavone class of flavonoids and potentially inhibits the growth of many cancers; however, it is unexplored in prostate cancer. This study reports the antiproliferative potential of THF in prostate cancer cell line via reactive oxygen species (ROS)-mediated cascades and examines the tumour reduction potential in swiss albino mice. The potency of THF was evaluated by employing cytotoxicity assays and wound healing assays. Cell cycle, ROS, mitochondrial membrane potential (MMP), and Annexin-V-FITC assay were performed using a flow cytometer. In vivo, anticancer potential was achieved using the mice Ehrlich Ascites Carcinoma (EAC) model. THF inhibits cell growth with IC50 of 64.30 µM (MTT), 81.22 µM (NRU) and 25.81 µM (SRB), substantiated by cell migration assay. Cell-cycle analysis revealed that THF increases the subdiploid population. Furthermore, the Annexin-V-FITC assay evoked a significant induction of late apoptosis at a higher concentration of THF. THF also disrupts MMP, caused by an increased generation of ROS. In the EAC model, THF significantly inhibits tumour growth and increases the percent survival of mice and ROS levels in EAC cells. Hence, it may be concluded that THF might execute its antiproliferative effect via inducing ROS generation and could be a promising lead for preclinical and clinical validations.
Asunto(s)
Adenocarcinoma , Neoplasias de la Próstata , Masculino , Animales , Ratones , Humanos , Especies Reactivas de Oxígeno/metabolismo , Andrógenos , Fluoresceína-5-Isotiocianato , Próstata/metabolismo , Apoptosis , Proliferación Celular , Flavonoides/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Adenocarcinoma/tratamiento farmacológico , Anexinas , Línea Celular TumoralRESUMEN
BACKGROUND: Triple-negative breast cancer (TNBC) accounts for 20% of breast cancer that does not express HER2, progesterone and estrogen receptors. It is associated with a high mortality rate, morbidity, metastasis, recurrence, poor prognosis and resistance to chemotherapy. Lipoxygenase-5 (LOX-5), cyclooxygenase-2 (COX-2), cathepsin-D (CATD), ornithine decarboxylase (ODC) and dihydrofolate reductase (DHFR) are involved in breast cancer carcinogenesis; hence, there is a pressing need to identify novel chemicals that targets these enzymes. Narirutin, a flavanone glycoside abundantly present in citrus fruits, is reported to have immune-modulatory, anti-allergic and antioxidant potential. Still, the cancer chemopreventive mechanism against TNBC has not been explored. METHODS: In vitro experiments, enzyme activity, expression analysis, molecular docking and MD simulation were carried out. RESULTS: Narirutin suppressed the growth of MDA-MB-231 and MCF-7 in a dose-proportional manner. The pronounced effect with >50% inhibition was observed in SRB and MTT assays for MDAMB-231 cells. Unexpectedly, narirutin suppressed the proliferation of normal cells (24.51%) at 100 µM. Further, narirutin inhibits the activity of LOX-5 in cell-free (18.18 ± 3.93 µM) and cell-based (48.13 ± 7.04 µM) test systems while moderately affecting COX-2, CATD, ODC and DHFR activity. Moreover, narirutin revealed a down-regulation of LOX-5 expression with a fold change of 1.23. Besides, MD simulation experiments confirm that narirutin binding forms a stable complex with LOX-5 and improves the stability and compactness of LOX-5. In addition, the prediction analysis demonstrates that narirutin could not cross the blood-brain barrier and did not act as an inhibitor of different CYPs. CONCLUSIONS AND SIGNIFICANCE: Narirutin could be a potent cancer chemopreventive lead for TNBC, further paving the way for synthesizing novel analogues.
Asunto(s)
Flavanonas , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Lipooxigenasa/uso terapéutico , Ciclooxigenasa 2 , Simulación del Acoplamiento Molecular , Flavanonas/farmacología , Ornitina DescarboxilasaRESUMEN
Narirutin is a dietary flavanone found in lemons, oranges, passion fruit, bergamot and grapefruit. It possesses anti-allergic, cardioprotective, neuroprotective, hepatoprotective potential, and its enriched fraction suppresses the growth of prostate cancer cells; however, there is currently no information on the chemopreventive potential of narirutin alone against hormone-refractory prostate cancer cells (PC-3) and its mode of action. Thus, the chemopreventive possibility of narirutin was investigated in PC-3 cells by utilising cytotoxicity assays. Further, a mechanism was deduced targeting hyaluronidase, an early-stage diagnosis marker, by cell-free, cell-based and in silico studies. The results indicate that narirutin reduced the viability of PC-3 cells with the inhibitory concentration range of 66.87-59.80 µM. It induced G0/G1 phase arrest with a fold change of 1.12. Besides, it increased the generation of reactive oxygen species (ROS) with a fold change of 1.34 at 100 µM. Narirutin inhibited hyaluronidase's activity in cell-free (11.17 µM) and cell-based assays (67.23 µM) and showed a strong binding interaction with hyaluronidase. Finally, the MD simulation analysis supported the idea that narirutin binding enhanced compactness and stability and created a stable complex with hyaluronidase. In addition, ADMET prediction indicates that it is a non-toxic, non-CYPs inhibitor and thus didn't alter the metabolism. The results reveal that narirutin may be a potential chemopreventive agent for hormone-resistant prostate cancer cells in addition to offering data for supporting diet-based nutraceutical agents to prevent prostate cancer.
Asunto(s)
Citrus , Flavanonas , Neoplasias de la Próstata , Humanos , Masculino , Flavonoides , Hialuronoglucosaminidasa , Frutas/metabolismo , Neoplasias de la Próstata/metabolismo , División Celular , Flavanonas/farmacología , Hormonas , Proliferación Celular , Línea Celular Tumoral , ApoptosisRESUMEN
BACKGROUND: Carvacrol is a naturally occurring phenolic isopropyl monoterpene isolated from oregano, thyme, pepperwort, ajwain, marjoram, and wild bergamot. It possesses pharmacological activities, including anticancer, anti-genotoxic, and anti-inflammation associated with antioxidant properties. The antioxidant property of carvacrol is found to be accountable for its anticancer property. Thus, the present review summarizes and discusses the anticancer potential of carvacrol, revealing its target, signalling pathways, efficacy, pharmacokinetics, and toxicity. OBJECTIVE: Carvacrol showed promising activity to be considered in more detail for cancer treatment. This review aims to summarize the evidence concerning the understanding of anticancer potential of carvacrol. However, the mode of action of carvacrol is not yet fully explored and hence requires detailed exploratory studies. This review consists of carvacol's in vitro, in vivo, preclinical and clinical studies. METHODS: A literature search was done by searching various online databases like Pubmed, Scopus, and Google Scholar with the specific keyword "Carvacrol," along with other keywords, such as "antioxidant properties," "oncology research," "genotoxicity," and "anti-inflammatory property". RESULTS: Carvacrol possesses weak mutagenic and genotoxic potential at non-toxic doses. Carvacrol alone shows the potential to target cancerous cells and significantly deter the growth of cancer cells; this is a targeted method. It offers anti-inflammatory effects by decreasing oxidative stress, primarily targeting ER and mitochondria. Carvacrol depicts targeted explicitly ROSdependent and mitochondrial-mediated apoptosis in different cancer cells. Moreover, carvacrol significantly regulates the cell cycle and prevents tumor progression. Few reports also suggest its significant role in inhibiting cell migration, invasion, and angiogenesis in tumor cells. Hence, carvacrol affects cell survival and cell-killing activity by targeting key biomarkers and major signalling pathways, including PI3K/AKT/mTOR, MAPK, STAT3, and Notch. CONCLUSION: Until now, its anticancer mechanism is not yet fully explored. A limited number of research studies have been conducted on carvacrol. It possesses both cancer prevention and cancer therapeutic properties. This molecule needs more validatory research so that it can be analyzed precisely.