Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746445

RESUMEN

Improvements in single-cell whole-genome sequencing (scWGS) assays have enabled detailed characterization of somatic copy number alterations (CNAs) at the single-cell level. Yet, current computational methods are mostly designed for detecting chromosome-scale changes in cancer samples with low sequencing coverage. Here, we introduce HiScanner (High-resolution Single-Cell Allelic copy Number callER), which combines read depth, B-allele frequency, and haplotype phasing to identify CNAs with high resolution. In simulated data, HiScanner consistently outperforms state-of-the-art methods across various CNA types and sizes. When applied to high-coverage scWGS data from human brain cells, HiScanner shows a superior ability to detect smaller CNAs, uncovering distinct CNA patterns between neurons and oligodendrocytes. For 179 cells we sequenced from longitudinal meningioma samples, integration of CNAs with point mutations revealed evolutionary trajectories of tumor cells. These findings show that HiScanner enables accurate characterization of frequency, clonality, and distribution of CNAs at the single-cell level in both non-neoplastic and neoplastic cells.

2.
Cell ; 187(8): 1955-1970.e23, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38503282

RESUMEN

Characterizing somatic mutations in the brain is important for disentangling the complex mechanisms of aging, yet little is known about mutational patterns in different brain cell types. Here, we performed whole-genome sequencing (WGS) of 86 single oligodendrocytes, 20 mixed glia, and 56 single neurons from neurotypical individuals spanning 0.4-104 years of age and identified >92,000 somatic single-nucleotide variants (sSNVs) and small insertions/deletions (indels). Although both cell types accumulate somatic mutations linearly with age, oligodendrocytes accumulated sSNVs 81% faster than neurons and indels 28% slower than neurons. Correlation of mutations with single-nucleus RNA profiles and chromatin accessibility from the same brains revealed that oligodendrocyte mutations are enriched in inactive genomic regions and are distributed across the genome similarly to mutations in brain cancers. In contrast, neuronal mutations are enriched in open, transcriptionally active chromatin. These stark differences suggest an assortment of active mutagenic processes in oligodendrocytes and neurons.


Asunto(s)
Envejecimiento , Encéfalo , Neuronas , Oligodendroglía , Humanos , Envejecimiento/genética , Envejecimiento/patología , Cromatina/genética , Cromatina/metabolismo , Mutación , Neuronas/metabolismo , Neuronas/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Análisis de Expresión Génica de una Sola Célula , Secuenciación Completa del Genoma , Encéfalo/metabolismo , Encéfalo/patología , Polimorfismo de Nucleótido Simple , Mutación INDEL , Bancos de Muestras Biológicas , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/patología
4.
bioRxiv ; 2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36711756

RESUMEN

Characterizing the mechanisms of somatic mutations in the brain is important for understanding aging and disease, but little is known about the mutational patterns of different cell types. We performed whole-genome sequencing of 71 oligodendrocytes and 51 neurons from neurotypical individuals (0.4 to 104 years old) and identified >67,000 somatic single nucleotide variants (sSNVs) and small insertions and deletions (indels). While both cell types accumulate mutations with age, oligodendrocytes accumulate sSNVs 69% faster than neurons (27/year versus 16/year) whereas indels accumulate 42% slower (1.8/year versus 3.1/year). Correlation with single-cell RNA and chromatin accessibility from the same brains revealed that oligodendrocyte mutations are enriched in inactive genomic regions and are distributed similarly to mutations in brain cancers. In contrast, neuronal mutations are enriched in open, transcriptionally active chromatin. These patterns highlight differences in the mutagenic processes in glia and neurons and suggest cell type-specific, age-related contributions to neurodegeneration and oncogenesis.

5.
Nat Genet ; 54(10): 1564-1571, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36163278

RESUMEN

Accurate somatic mutation detection from single-cell DNA sequencing is challenging due to amplification-related artifacts. To reduce this artifact burden, an improved amplification technique, primary template-directed amplification (PTA), was recently introduced. We analyzed whole-genome sequencing data from 52 PTA-amplified single neurons using SCAN2, a new genotyper we developed to leverage mutation signatures and allele balance in identifying somatic single-nucleotide variants (SNVs) and small insertions and deletions (indels) in PTA data. Our analysis confirms an increase in nonclonal somatic mutation in single neurons with age, but revises the estimated rate of this accumulation to 16 SNVs per year. We also identify artifacts in other amplification methods. Most importantly, we show that somatic indels increase by at least three per year per neuron and are enriched in functional regions of the genome such as enhancers and promoters. Our data suggest that indels in gene-regulatory elements have a considerable effect on genome integrity in human neurons.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Mutación Puntual , Genoma Humano/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutación INDEL/genética , Neuronas , Nucleótidos , Polimorfismo de Nucleótido Simple/genética , Análisis de la Célula Individual
6.
Nature ; 604(7907): 714-722, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35444284

RESUMEN

Dementia in Alzheimer's disease progresses alongside neurodegeneration1-4, but the specific events that cause neuronal dysfunction and death remain poorly understood. During normal ageing, neurons progressively accumulate somatic mutations5 at rates similar to those of dividing cells6,7 which suggests that genetic factors, environmental exposures or disease states might influence this accumulation5. Here we analysed single-cell whole-genome sequencing data from 319 neurons from the prefrontal cortex and hippocampus of individuals with Alzheimer's disease and neurotypical control individuals. We found that somatic DNA alterations increase in individuals with Alzheimer's disease, with distinct molecular patterns. Normal neurons accumulate mutations primarily in an age-related pattern (signature A), which closely resembles 'clock-like' mutational signatures that have been previously described in healthy and cancerous cells6-10. In neurons affected by Alzheimer's disease, additional DNA alterations are driven by distinct processes (signature C) that highlight C>A and other specific nucleotide changes. These changes potentially implicate nucleotide oxidation4,11, which we show is increased in Alzheimer's-disease-affected neurons in situ. Expressed genes exhibit signature-specific damage, and mutations show a transcriptional strand bias, which suggests that transcription-coupled nucleotide excision repair has a role in the generation of mutations. The alterations in Alzheimer's disease affect coding exons and are predicted to create dysfunctional genetic knockout cells and proteostatic stress. Our results suggest that known pathogenic mechanisms in Alzheimer's disease may lead to genomic damage to neurons that can progressively impair function. The aberrant accumulation of DNA alterations in neurodegeneration provides insight into the cascade of molecular and cellular events that occurs in the development of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Neuronas , Envejecimiento , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , ADN , Exones , Genómica , Hipocampo/citología , Humanos , Tasa de Mutación , Neuronas/patología , Nucleótidos , Corteza Prefrontal/citología , Secuenciación Completa del Genoma
8.
Genome Biol ; 22(1): 92, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33781308

RESUMEN

BACKGROUND: Post-zygotic mutations incurred during DNA replication, DNA repair, and other cellular processes lead to somatic mosaicism. Somatic mosaicism is an established cause of various diseases, including cancers. However, detecting mosaic variants in DNA from non-cancerous somatic tissues poses significant challenges, particularly if the variants only are present in a small fraction of cells. RESULTS: Here, the Brain Somatic Mosaicism Network conducts a coordinated, multi-institutional study to examine the ability of existing methods to detect simulated somatic single-nucleotide variants (SNVs) in DNA mixing experiments, generate multiple replicates of whole-genome sequencing data from the dorsolateral prefrontal cortex, other brain regions, dura mater, and dural fibroblasts of a single neurotypical individual, devise strategies to discover somatic SNVs, and apply various approaches to validate somatic SNVs. These efforts lead to the identification of 43 bona fide somatic SNVs that range in variant allele fractions from ~ 0.005 to ~ 0.28. Guided by these results, we devise best practices for calling mosaic SNVs from 250× whole-genome sequencing data in the accessible portion of the human genome that achieve 90% specificity and sensitivity. Finally, we demonstrate that analysis of multiple bulk DNA samples from a single individual allows the reconstruction of early developmental cell lineage trees. CONCLUSIONS: This study provides a unified set of best practices to detect somatic SNVs in non-cancerous tissues. The data and methods are freely available to the scientific community and should serve as a guide to assess the contributions of somatic SNVs to neuropsychiatric diseases.


Asunto(s)
Encéfalo/metabolismo , Estudios de Asociación Genética , Variación Genética , Alelos , Mapeo Cromosómico , Biología Computacional/métodos , Estudios de Asociación Genética/métodos , Genómica/métodos , Células Germinativas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Especificidad de Órganos/genética , Polimorfismo de Nucleótido Simple
10.
Nat Neurosci ; 24(2): 176-185, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33432195

RESUMEN

We characterize the landscape of somatic mutations-mutations occurring after fertilization-in the human brain using ultra-deep (~250×) whole-genome sequencing of prefrontal cortex from 59 donors with autism spectrum disorder (ASD) and 15 control donors. We observe a mean of 26 somatic single-nucleotide variants per brain present in ≥4% of cells, with enrichment of mutations in coding and putative regulatory regions. Our analysis reveals that the first cell division after fertilization produces ~3.4 mutations, followed by 2-3 mutations in subsequent generations. This suggests that a typical individual possesses ~80 somatic single-nucleotide variants present in ≥2% of cells-comparable to the number of de novo germline mutations per generation-with about half of individuals having at least one potentially function-altering somatic mutation somewhere in the cortex. ASD brains show an excess of somatic mutations in neural enhancer sequences compared with controls, suggesting that mosaic enhancer mutations may contribute to ASD risk.


Asunto(s)
Trastorno del Espectro Autista/patología , Corteza Prefrontal/patología , División Celular/genética , Cromatina/genética , Desarrollo Embrionario/genética , Epigénesis Genética , Exones , Femenino , Redes Reguladoras de Genes/genética , Predisposición Genética a la Enfermedad , Genoma Humano/genética , Mutación de Línea Germinal/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Polimorfismo de Nucleótido Simple , Embarazo , Secuenciación Completa del Genoma
11.
Nat Biotechnol ; 38(3): 314-319, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31907404

RESUMEN

Detection of mosaic mutations that arise in normal development is challenging, as such mutations are typically present in only a minute fraction of cells and there is no clear matched control for removing germline variants and systematic artifacts. We present MosaicForecast, a machine-learning method that leverages read-based phasing and read-level features to accurately detect mosaic single-nucleotide variants and indels, achieving a multifold increase in specificity compared with existing algorithms. Using single-cell sequencing and targeted sequencing, we validated 80-90% of the mosaic single-nucleotide variants and 60-80% of indels detected in human brain whole-genome sequencing data. Our method should help elucidate the contribution of mosaic somatic mutations to the origin and development of disease.


Asunto(s)
Mutación INDEL , Polimorfismo de Nucleótido Simple , Análisis de la Célula Individual/métodos , Secuenciación Completa del Genoma/métodos , Química Encefálica , Mutación de Línea Germinal , Humanos , Aprendizaje Automático , Mosaicismo , Programas Informáticos
12.
Genome Biol ; 20(1): 209, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31610796

RESUMEN

BACKGROUND: Genomic rearrangements exert a heavy influence on the molecular landscape of cancer. New analytical approaches integrating somatic structural variants (SSVs) with altered gene features represent a framework by which we can assign global significance to a core set of genes, analogous to established methods that identify genes non-randomly targeted by somatic mutation or copy number alteration. While recent studies have defined broad patterns of association involving gene transcription and nearby SSV breakpoints, global alterations in DNA methylation in the context of SSVs remain largely unexplored. RESULTS: By data integration of whole genome sequencing, RNA sequencing, and DNA methylation arrays from more than 1400 human cancers, we identify hundreds of genes and associated CpG islands (CGIs) for which the nearby presence of a somatic structural variant (SSV) breakpoint is recurrently associated with altered expression or DNA methylation, respectively, independently of copy number alterations. CGIs with SSV-associated increased methylation are predominantly promoter-associated, while CGIs with SSV-associated decreased methylation are enriched for gene body CGIs. Rearrangement of genomic regions normally having higher or lower methylation is often involved in SSV-associated CGI methylation alterations. Across cancers, the overall structural variation burden is associated with a global decrease in methylation, increased expression in methyltransferase genes and DNA damage response genes, and decreased immune cell infiltration. CONCLUSION: Genomic rearrangement appears to have a major role in shaping the cancer DNA methylome, to be considered alongside commonly accepted mechanisms including histone modifications and disruption of DNA methyltransferases.


Asunto(s)
Epigenoma , Variación Estructural del Genoma , Neoplasias/genética , Islas de CpG , Humanos
13.
Nat Commun ; 10(1): 3908, 2019 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-31467286

RESUMEN

Recent advances in single cell technology have enabled dissection of cellular heterogeneity in great detail. However, analysis of single cell DNA sequencing data remains challenging due to bias and artifacts that arise during DNA extraction and whole-genome amplification, including allelic imbalance and dropout. Here, we present a framework for statistical estimation of allele-specific amplification imbalance at any given position in single cell whole-genome sequencing data by utilizing the allele frequencies of heterozygous single nucleotide polymorphisms in the neighborhood. The resulting allelic imbalance profile is critical for determining whether the variant allele fraction of an observed mutation is consistent with the expected fraction for a true variant. This method, implemented in SCAN-SNV (Single Cell ANalysis of SNVs), substantially improves the identification of somatic variants in single cells. Our allele balance framework is broadly applicable to genotype analysis of any variant type in any data that might exhibit allelic imbalance.


Asunto(s)
Desequilibrio Alélico , Secuencia de Bases , Modelos Genéticos , Mutación , Análisis de la Célula Individual/métodos , Algoritmos , Cromosomas Humanos X , Frecuencia de los Genes , Genes Relacionados con las Neoplasias , Genotipo , Humanos , Masculino , Neoplasias/genética , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma
14.
Nat Genet ; 51(4): 749-754, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30886424

RESUMEN

Whole-genome sequencing of DNA from single cells has the potential to reshape our understanding of mutational heterogeneity in normal and diseased tissues. However, a major difficulty is distinguishing amplification artifacts from biologically derived somatic mutations. Here, we describe linked-read analysis (LiRA), a method that accurately identifies somatic single-nucleotide variants (sSNVs) by using read-level phasing with nearby germline heterozygous polymorphisms, thereby enabling the characterization of mutational signatures and estimation of somatic mutation rates in single cells.


Asunto(s)
Mutación/genética , Análisis Mutacional de ADN/métodos , Heterocigoto , Humanos , Tasa de Mutación , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN/métodos , Análisis de la Célula Individual/métodos , Secuenciación Completa del Genoma/métodos
15.
Cell Rep ; 24(2): 515-527, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29996110

RESUMEN

A systematic cataloging of genes affected by genomic rearrangement, using multiple patient cohorts and cancer types, can provide insight into cancer-relevant alterations outside of exomes. By integrative analysis of whole-genome sequencing (predominantly low pass) and gene expression data from 1,448 cancers involving 18 histopathological types in The Cancer Genome Atlas, we identified hundreds of genes for which the nearby presence (within 100 kb) of a somatic structural variant (SV) breakpoint is associated with altered expression. While genomic rearrangements are associated with widespread copy-number alteration (CNA) patterns, approximately 1,100 genes-including overexpressed cancer driver genes (e.g., TERT, ERBB2, CDK12, CDK4) and underexpressed tumor suppressors (e.g., TP53, RB1, PTEN, STK11)-show SV-associated deregulation independent of CNA. SVs associated with the disruption of topologically associated domains, enhancer hijacking, or fusion transcripts are implicated in gene upregulation. For cancer-relevant pathways, SVs considerably expand our understanding of how genes are affected beyond point mutation or CNA.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Reordenamiento Génico/genética , Genes Relacionados con las Neoplasias , Genoma Humano , Neoplasias/genética , Secuencia de Bases , Carcinogénesis/genética , Carcinogénesis/patología , Variaciones en el Número de Copia de ADN/genética , Elementos de Facilitación Genéticos/genética , Humanos
16.
Trends Genet ; 34(7): 545-557, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29731376

RESUMEN

Somatic mutations have been studied extensively in the context of cancer. Recent studies have demonstrated that high-throughput sequencing data can be used to detect somatic mutations in non-tumor cells. Analysis of such mutations allows us to better understand the mutational processes in normal cells, explore cell lineages in development, and examine potential associations with age-related disease. We describe here approaches for characterizing somatic mutations in normal and non-tumor disease tissues. We discuss several experimental designs and common pitfalls in somatic mutation detection, as well as more recent developments such as phasing and linked-read technology. With the dramatically increasing numbers of samples undergoing genome sequencing, bioinformatic analysis will enable the characterization of somatic mutations and their impact on non-cancer tissues.


Asunto(s)
Mutación/genética , Animales , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Neoplasias/genética
17.
Science ; 359(6375): 555-559, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29217584

RESUMEN

It has long been hypothesized that aging and neurodegeneration are associated with somatic mutation in neurons; however, methodological hurdles have prevented testing this hypothesis directly. We used single-cell whole-genome sequencing to perform genome-wide somatic single-nucleotide variant (sSNV) identification on DNA from 161 single neurons from the prefrontal cortex and hippocampus of 15 normal individuals (aged 4 months to 82 years), as well as 9 individuals affected by early-onset neurodegeneration due to genetic disorders of DNA repair (Cockayne syndrome and xeroderma pigmentosum). sSNVs increased approximately linearly with age in both areas (with a higher rate in hippocampus) and were more abundant in neurodegenerative disease. The accumulation of somatic mutations with age-which we term genosenium-shows age-related, region-related, and disease-related molecular signatures and may be important in other human age-associated conditions.


Asunto(s)
Envejecimiento/genética , Reparación del ADN/genética , Tasa de Mutación , Enfermedades Neurodegenerativas/genética , Neurogénesis/genética , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Síndrome de Cockayne/genética , Análisis Mutacional de ADN , Femenino , Hipocampo/citología , Hipocampo/embriología , Humanos , Lactante , Masculino , Persona de Mediana Edad , Neuronas , Corteza Prefrontal/citología , Corteza Prefrontal/embriología , Análisis de la Célula Individual , Secuenciación Completa del Genoma , Xerodermia Pigmentosa/genética , Adulto Joven
18.
Cancer Cell ; 31(6): 820-832.e3, 2017 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-28528867

RESUMEN

Molecular alterations involving the PI3K/AKT/mTOR pathway (including mutation, copy number, protein, or RNA) were examined across 11,219 human cancers representing 32 major types. Within specific mutated genes, frequency, mutation hotspot residues, in silico predictions, and functional assays were all informative in distinguishing the subset of genetic variants more likely to have functional relevance. Multiple oncogenic pathways including PI3K/AKT/mTOR converged on similar sets of downstream transcriptional targets. In addition to mutation, structural variations and partial copy losses involving PTEN and STK11 showed evidence for having functional relevance. A substantial fraction of cancers showed high mTOR pathway activity without an associated canonical genetic or genomic alteration, including cancers harboring IDH1 or VHL mutations, suggesting multiple mechanisms for pathway activation.


Asunto(s)
Neoplasias/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteogenómica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Humanos , Mutación , Neoplasias/metabolismo , Transducción de Señal , Análisis de Supervivencia
19.
Sci Rep ; 6: 24650, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27090146

RESUMEN

Next generation sequencing is a transformative technology for discovering and diagnosing genetic disorders. However, high-throughput sequencing remains error-prone, necessitating variant confirmation in order to meet the exacting demands of clinical diagnostic sequencing. To address this, we devised an orthogonal, dual platform approach employing complementary target capture and sequencing chemistries to improve speed and accuracy of variant calls at a genomic scale. We combined DNA selection by bait-based hybridization followed by Illumina NextSeq reversible terminator sequencing with DNA selection by amplification followed by Ion Proton semiconductor sequencing. This approach yields genomic scale orthogonal confirmation of ~95% of exome variants. Overall variant sensitivity improves as each method covers thousands of coding exons missed by the other. We conclude that orthogonal NGS offers improvements in variant calling sensitivity when two platforms are used, better specificity for variants identified on both platforms, and greatly reduces the time and expense of Sanger follow-up, thus enabling physicians to act on genomic results more quickly.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Técnicas de Diagnóstico Molecular/métodos , Análisis de Secuencia de ADN/métodos , Exoma , Humanos , Reacción en Cadena de la Polimerasa/métodos , Sensibilidad y Especificidad
20.
Science ; 350(6256): 94-98, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26430121

RESUMEN

Neurons live for decades in a postmitotic state, their genomes susceptible to DNA damage. Here we survey the landscape of somatic single-nucleotide variants (SNVs) in the human brain. We identified thousands of somatic SNVs by single-cell sequencing of 36 neurons from the cerebral cortex of three normal individuals. Unlike germline and cancer SNVs, which are often caused by errors in DNA replication, neuronal mutations appear to reflect damage during active transcription. Somatic mutations create nested lineage trees, allowing them to be dated relative to developmental landmarks and revealing a polyclonal architecture of the human cerebral cortex. Thus, somatic mutations in the brain represent a durable and ongoing record of neuronal life history, from development through postmitotic function.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Mutación , Neuronas/citología , Neuronas/fisiología , Polimorfismo de Nucleótido Simple , Transcripción Genética , Adolescente , Linaje de la Célula , Análisis Mutacional de ADN , Replicación del ADN/genética , Femenino , Sitios Genéticos , Humanos , Masculino , Mitosis/genética , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA