Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34099555

RESUMEN

Immunotherapies are a promising advance in cancer treatment. However, because only a subset of cancer patients benefits from these treatments it is important to find mechanisms that will broaden the responding patient population. Generally, tumors with high mutational burdens have the potential to express greater numbers of mutant neoantigens. As neoantigens can be targets of protective adaptive immunity, highly mutated tumors are more responsive to immunotherapy. Given that external beam radiation 1) is a standard-of-care cancer therapy, 2) induces expression of mutant proteins and potentially mutant neoantigens in treated cells, and 3) has been shown to synergize clinically with immune checkpoint therapy (ICT), we hypothesized that at least one mechanism of this synergy was the generation of de novo mutant neoantigen targets in irradiated cells. Herein, we use KrasG12D x p53-/- sarcoma cell lines (KP sarcomas) that we and others have shown to be nearly devoid of mutations, are poorly antigenic, are not controlled by ICT, and do not induce a protective antitumor memory response. However, following one in vitro dose of 4- or 9-Gy irradiation, KP sarcoma cells acquire mutational neoantigens and become sensitive to ICT in vivo in a T cell-dependent manner. We further demonstrate that some of the radiation-induced mutations generate cytotoxic CD8+ T cell responses, are protective in a vaccine model, and are sufficient to make the parental KP sarcoma line susceptible to ICT. These results provide a proof of concept that induction of new antigenic targets in irradiated tumor cells represents an additional mechanism explaining the clinical findings of the synergy between radiation and immunotherapy.


Asunto(s)
Antígenos de Neoplasias/inmunología , Inmunoterapia , Mutación/genética , Neoplasias/genética , Neoplasias/inmunología , Radiación , Animales , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Células Clonales , Femenino , Antígenos de Histocompatibilidad Clase II/metabolismo , Proteínas de Punto de Control Inmunitario/metabolismo , Inmunidad , Ratones , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína p53 Supresora de Tumor/genética , Vacunación
2.
Nature ; 574(7780): 696-701, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31645760

RESUMEN

The ability of the immune system to eliminate and shape the immunogenicity of tumours defines the process of cancer immunoediting1. Immunotherapies such as those that target immune checkpoint molecules can be used to augment immune-mediated elimination of tumours and have resulted in durable responses in patients with cancer that did not respond to previous treatments. However, only a subset of patients benefit from immunotherapy and more knowledge about what is required for successful treatment is needed2-4. Although the role of tumour neoantigen-specific CD8+ T cells in tumour rejection is well established5-9, the roles of other subsets of T cells have received less attention. Here we show that spontaneous and immunotherapy-induced anti-tumour responses require the activity of both tumour-antigen-specific CD8+ and CD4+ T cells, even in tumours that do not express major histocompatibility complex (MHC) class II molecules. In addition, the expression of MHC class II-restricted antigens by tumour cells is required at the site of successful rejection, indicating that activation of CD4+ T cells must also occur in the tumour microenvironment. These findings suggest that MHC class II-restricted neoantigens have a key function in the anti-tumour response that is nonoverlapping with that of MHC class I-restricted neoantigens and therefore needs to be considered when identifying patients who will most benefit from immunotherapy.


Asunto(s)
Antígenos de Neoplasias/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Neoplasias Experimentales/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Inmunoterapia , Ratones , Neoplasias Experimentales/terapia
3.
Artículo en Inglés | MEDLINE | ID: mdl-29661791

RESUMEN

Originally identified in studies of cellular resistance to viral infection, interferon (IFN)-γ is now known to represent a distinct member of the IFN family and plays critical roles not only in orchestrating both innate and adaptive immune responses against viruses, bacteria, and tumors, but also in promoting pathologic inflammatory processes. IFN-γ production is largely restricted to T lymphocytes and natural killer (NK) cells and can ultimately lead to the generation of a polarized immune response composed of T helper (Th)1 CD4+ T cells and CD8+ cytolytic T cells. In contrast, the temporally distinct elaboration of IFN-γ in progressively growing tumors also promotes a state of adaptive resistance caused by the up-regulation of inhibitory molecules, such as programmed-death ligand 1 (PD-L1) on tumor cell targets, and additional host cells within the tumor microenvironment. This review focuses on the diverse positive and negative roles of IFN-γ in immune cell activation and differentiation leading to protective immune responses, as well as the paradoxical effects of IFN-γ within the tumor microenvironment that determine the ultimate fate of that tumor in a cancer-bearing individual.


Asunto(s)
Interferón gamma/fisiología , Neoplasias/inmunología , Receptores de Interferón/metabolismo , Animales , Células Presentadoras de Antígenos/metabolismo , Humanos , Interferón gamma/química , Activación de Linfocitos , Activación de Macrófagos , Estructura Molecular , Receptores de Interferón/química , Transducción de Señal , Receptor de Interferón gamma
4.
Immunotherapy ; 8(10): 1233-44, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27605071

RESUMEN

Survival outcomes for osteosarcoma have plateaued since the 1980s, and patients with relapsed or refractory disease have a particularly dismal outcome. Treatment options for these patients are limited primarily due to the paucity of effective therapeutics. Immune therapies such as tumor vaccines and traditional antigen-targeted monoclonal antibodies have had limited success in solid tumors. The recent discovery of novel immune checkpoint blockade strategies and their success in adult cancers has revitalized the use of immunotherapy strategies for the treatment of solid tumors. This paper summarizes existing data supporting the use of immune therapies in osteosarcoma and the progress of this class of drugs in osteosarcoma therapy.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Neoplasias Óseas/terapia , Vacunas contra el Cáncer/inmunología , Inmunoterapia/métodos , Osteosarcoma/terapia , Adulto , Neoplasias Óseas/inmunología , Neoplasias Óseas/mortalidad , Receptores Coestimuladores e Inhibidores de Linfocitos T/inmunología , Humanos , Glicoproteínas de Membrana/inmunología , Osteosarcoma/inmunología , Osteosarcoma/mortalidad , Análisis de Supervivencia
5.
BMC Cancer ; 16: 310, 2016 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-27178315

RESUMEN

BACKGROUND: Glioblastoma multiforme is a highly aggressive brain tumor with a poor prognosis, and advances in treatment have led to only marginal increases in overall survival. We and others have shown previously that the therapeutic ketogenic diet (KD) prolongs survival in mouse models of glioma, explained by both direct tumor growth inhibition and suppression of pro-inflammatory microenvironment conditions. The aim of this study is to assess the effects of the KD on the glioma reactive immune response. METHODS: The GL261-Luc2 intracranial mouse model of glioma was used to investigate the effects of the KD on the tumor-specific immune response. Tumor-infiltrating CD8+ T cells, CD4+ T cells and natural killer (NK) cells were analyzed by flow cytometry. The expression of immune inhibitory receptors cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed death 1 (PD-1) on CD8+ T cells were also analyzed by flow cytometry. Analysis of intracellular cytokine production was used to determine production of IFN, IL-2 and IFN- in tumor-infiltrating CD8+ T and natural killer (NK) cells and IL-10 production by T regulatory cells. RESULTS: We demonstrate that mice fed the KD had increased tumor-reactive innate and adaptive immune responses, including increased cytokine production and cytolysis via tumor-reactive CD8+ T cells. Additionally, we saw that mice maintained on the KD had increased CD4 infiltration, while T regulatory cell numbers stayed consistent. Lastly, mice fed the KD had a significant reduction in immune inhibitory receptor expression as well as decreased inhibitory ligand expression on glioma cells. CONCLUSIONS: The KD may work in part as an immune adjuvant, boosting tumor-reactive immune responses in the microenvironment by alleviating immune suppression. This evidence suggests that the KD increases tumor-reactive immune responses, and may have implications in combinational treatment approaches.


Asunto(s)
Neoplasias Encefálicas/dietoterapia , Citocinas/metabolismo , Dieta Cetogénica/métodos , Glioblastoma/dietoterapia , Animales , Neoplasias Encefálicas/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Glioblastoma/inmunología , Humanos , Células Asesinas Naturales/inmunología , Subgrupos Linfocitarios/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
6.
J Immunother Cancer ; 3: 21, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25992292

RESUMEN

BACKGROUND: Osteosarcoma is one of the most common bone cancers in children. Most patients with metastatic osteosarcoma die of pulmonary disease and limited curative therapeutic options exist for such patients. We have previously shown that PD-1 limits the efficacy of CTL to mediate immune control of metastatic osteosarcoma in the K7M2 mouse model of pulmonary metastatic disease and that blockade of PD-1/PD-L1 interactions can partially improve survival outcomes by enhancing the function of osteosarcoma-specific CTL. However, PD-1/PD-L1 blockade-treated mice eventually succumb to disease due to selection of PD-L1 mAb-resistant tumor cells. We investigated the mechanism of tumor cell resistance after blockade, and additional combinational therapies to combat resistance. METHODS: We used an implantable model of metastatic osteosarcoma, and evaluated survival using a Log-rank test. Cellular analysis of the tumor was done post-mortem with flow cytometry staining, and evaluated using a T-test to compare treatment groups. RESULTS: We show here that T cells infiltrating PD-L1 antibody-resistant tumors upregulate additional inhibitory receptors, notably CTLA-4, which impair their ability to mediate tumor rejection. Based on these results we have tested combination immunotherapy with α-CTLA-4 and α-PD-L1 antibody blockade in the K7M2 mouse model of metastatic osteosarcoma and show that this results in complete control of tumors in a majority of mice as well as immunity to further tumor inoculation. CONCLUSIONS: Thus, combinational immunotherapy approaches to block additional inhibitory pathways in patients with metastatic osteosarcoma may provide new strategies to enhance tumor clearance and resistance to disease.

7.
J Immunother ; 38(3): 96-106, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25751499

RESUMEN

Osteosarcoma is the most common bone cancer in children and adolescents. Although 70% of patients with localized disease are cured with chemotherapy and surgical resection, patients with metastatic osteosarcoma are typically refractory to treatment. Numerous lines of evidence suggest that cytotoxic T lymphocytes (CTLs) limit the development of metastatic osteosarcoma. We have investigated the role of PD-1, an inhibitory TNFR family protein expressed on CTLs, in limiting the efficacy of immune-mediated control of metastatic osteosarcoma. We show that human metastatic, but not primary, osteosarcoma tumors express a ligand for PD-1 (PD-L1) and that tumor-infiltrating CTLs express PD-1, suggesting this pathway may limit CTLs control of metastatic osteosarcoma in patients. PD-L1 is also expressed on the K7M2 osteosarcoma tumor cell line that establishes metastases in mice, and PD-1 is expressed on tumor-infiltrating CTLs during disease progression. Blockade of PD-1/PD-L1 interactions dramatically improves the function of osteosarcoma-reactive CTLs in vitro and in vivo, and results in decreased tumor burden and increased survival in the K7M2 mouse model of metastatic osteosarcoma. Our results suggest that blockade of PD-1/PD-L1 interactions in patients with metastatic osteosarcoma should be pursued as a therapeutic strategy.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Neoplasias Óseas/inmunología , Inmunomodulación/efectos de los fármacos , Osteosarcoma/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Linfocitos T/inmunología , Adolescente , Adulto , Animales , Anticuerpos Monoclonales/administración & dosificación , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/mortalidad , Neoplasias Óseas/patología , Línea Celular Tumoral , Niño , Citocinas/metabolismo , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Expresión Génica , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones , Metástasis de la Neoplasia , Osteosarcoma/genética , Osteosarcoma/metabolismo , Osteosarcoma/mortalidad , Osteosarcoma/patología , Pronóstico , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T/metabolismo , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA