Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 12(9): e0183932, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28873435

RESUMEN

Cholangiocarcinoma (CCA) and its subtypes (mucin- and mixed-CCA) arise from the neoplastic transformation of cholangiocytes, the epithelial cells lining the biliary tree. CCA has a high mortality rate owing to its aggressiveness, late diagnosis and high resistance to radiotherapy and chemotherapeutics. We have demonstrated that CCA is enriched for cancer stem cells which express epithelial to mesenchymal transition (EMT) traits, with these features being associated with aggressiveness and drug resistance. TGF-ß signaling is upregulated in CCA and involved in EMT. We have recently established primary cell cultures from human mucin- and mixed-intrahepatic CCA. In human CCA primary cultures with different levels of EMT trait expression, we evaluated the anticancer effects of: (i) CX-4945, a casein kinase-2 (CK2) inhibitor that blocks TGF-ß1-induced EMT; and (ii) LY2157299, a TGF-ß receptor I kinase inhibitor. We tested primary cell lines expressing EMT trait markers (vimentin, N-cadherin and nuclear catenin) but negative for epithelial markers, and cell lines expressing epithelial markers (CK19-positive) in association with EMT traits. Cell viability was evaluated by MTS assays, apoptosis by Annexin V FITC and cell migration by wound-healing assay. RESULTS: at a dose of 10 µM, CX4945 significantly decreased cell viability of primary human cell cultures from both mucin and mixed CCA, whereas in CK19-positive cell cultures, the effect of CX4945 on cell viability required higher concentrations (>30µM). At the same concentrations, CX4945 also induced apoptosis (3- fold increase vs controls) which correlated with the expression level of CK2 in the different CCA cell lines (mucin- and mixed-CCA). Indeed, no apoptotic effects were observed in CK19-positive cells expressing lower CK2 levels. The effects of CX4945 on viability and apoptosis were associated with an increased number of γ-H2ax (biomarker for DNA double-strand breaks) foci, suggesting the active role of CK2 as a repair mechanism in CCAs. LY2157299 failed to influence cell proliferation or apoptosis but significantly inhibited cell migration. At a 50 µM concentration, in fact, LY2157299 significantly impaired (at 24, 48 and 120 hrs) the wound-healing of primary cell cultures from both mucin-and mixed-CCA. In conclusion, we demonstrated that CX4945 and LY2157299 exert relevant but distinct anticancer effects against human CCA cells, with CX4945 acting on cell viability and apoptosis, and LY2157299 impairing cell migration. These results suggest that targeting the TGF-ß signaling with a combination of CX-4945 and LY2157299 could have potential benefits in the treatment of human CCA.


Asunto(s)
Apoptosis , Colangiocarcinoma/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Línea Celular Tumoral , Movimiento Celular , Supervivencia Celular , Colangiocarcinoma/patología , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Humanos , Naftiridinas/química , Células Madre Neoplásicas/citología , Fenazinas , Cultivo Primario de Células , Pirazoles/química , Quinolinas/química , Transducción de Señal , Cicatrización de Heridas
2.
PLoS One ; 10(11): e0142124, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26571380

RESUMEN

We investigated the sensitivity of intrahepatic cholangiocarcinoma (IHCCA) subtypes to chemotherapeutics and molecular targeted agents. Primary cultures of mucin- and mixed-IHCCA were prepared from surgical specimens (N. 18 IHCCA patients) and evaluated for cell proliferation (MTS assay) and apoptosis (Caspase 3) after incubation (72 hours) with increasing concentrations of different drugs. In vivo, subcutaneous human tumor xenografts were evaluated. Primary cultures of mucin- and mixed-IHCCA were characterized by a different pattern of expression of cancer stem cell markers, and by a different drug sensitivity. Gemcitabine and the Gemcitabine-Cisplatin combination were more active in inhibiting cell proliferation in mixed-IHCCA while Cisplatin or Abraxane were more effective against mucin-IHCCA, where Abraxane also enhances apoptosis. 5-Fluoracil showed a slight inhibitory effect on cell proliferation that was more significant in mixed- than mucin-IHCCA primary cultures and, induced apoptosis only in mucin-IHCCA. Among Hg inhibitors, LY2940680 and Vismodegib showed slight effects on proliferation of both IHCCA subtypes. The tyrosine kinase inhibitors, Imatinib Mesylate and Sorafenib showed significant inhibitory effects on proliferation of both mucin- and mixed-IHCCA. The MEK 1/2 inhibitor, Selumetinib, inhibited proliferation of only mucin-IHCCA while the aminopeptidase-N inhibitor, Bestatin was more active against mixed-IHCCA. The c-erbB2 blocking antibody was more active against mixed-IHCCA while, the Wnt inhibitor, LGK974, similarly inhibited proliferation of mucin- and mixed-IHCCA. Either mucin- or mixed-IHCCA showed high sensitivity to nanomolar concentrations of the dual PI3-kinase/mTOR inhibitor, NVP-BEZ235. In vivo, in subcutaneous xenografts, either NVP-BEZ235 or Abraxane, blocked tumor growth. In conclusion, mucin- and mixed-IHCCA are characterized by a different drug sensitivity. Cisplatin, Abraxane and the MEK 1/2 inhibitor, Selumetinib were more active against mucin-IHCCA while, Gemcitabine, Gemcitabine-Cisplatin combination, the c-erbB2 blocking antibody and bestatin worked better against mixed-IHCCA. Remarkably, we identified a dual PI3-kinase/mTOR inhibitor that both in vitro and in vivo, exerts dramatic antiproliferative effects against both mucin- and mixed-IHCCA.


Asunto(s)
Neoplasias de los Conductos Biliares/tratamiento farmacológico , Colangiocarcinoma/tratamiento farmacológico , Terapia Molecular Dirigida/métodos , Anciano , Anciano de 80 o más Años , Paclitaxel Unido a Albúmina/farmacología , Anilidas/farmacología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis , Bencimidazoles/farmacología , Neoplasias de los Conductos Biliares/metabolismo , Proliferación Celular , Colangiocarcinoma/metabolismo , Cisplatino/farmacología , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Fluorouracilo/farmacología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Concentración 50 Inhibidora , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Mucinas/química , Trasplante de Neoplasias , Ftalazinas/farmacología , Piridinas/farmacología , Gemcitabina
3.
PLoS One ; 8(4): e59431, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23613711

RESUMEN

In mammals, the biological activity of the stem/progenitor compartment sustains production of mature gametes through spermatogenesis. Spermatogonial stem cells and their progeny belong to the class of undifferentiated spermatogonia, a germ cell population found on the basal membrane of the seminiferous tubules. A large body of evidence has demonstrated that glial cell line-derived neurotrophic factor (GDNF), a Sertoli-derived factor, is essential for in vivo and in vitro stem cell self-renewal. However, the mechanisms underlying this activity are not completely understood. In this study, we show that GDNF induces dose-dependent directional migration of freshly selected undifferentiated spermatogonia, as well as germline stem cells in culture, using a Boyden chamber assay. GDNF-induced migration is dependent on the expression of the GDNF co-receptor GFRA1, as shown by migration assays performed on parental and GFRA1-transduced GC-1 spermatogonial cell lines. We found that the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP) is specifically expressed in undifferentiated spermatogonia. VASP belongs to the ENA/VASP family of proteins implicated in actin-dependent processes, such as fibroblast migration, axon guidance, and cell adhesion. In intact seminiferous tubules and germline stem cell cultures, GDNF treatment up-regulates VASP in a dose-dependent fashion. These data identify a novel role for the niche-derived factor GDNF, and they suggest that GDNF may impinge on the stem/progenitor compartment, affecting the actin cytoskeleton and cell migration.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Espermatogonias/citología , Nicho de Células Madre , Células Madre/citología , Células Madre/efectos de los fármacos , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Moléculas de Adhesión Celular/metabolismo , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Ratas , Células Madre/metabolismo
4.
PLoS One ; 8(2): e56824, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23437250

RESUMEN

The abnormal expression of several microRNAs has a causal role in tumorigenesis with either antineoplastic or oncogenic functions. Here we demonstrated that miR-126 and miR-126* play a tumor suppressor role in human melanoma through the direct or indirect repression of several key oncogenic molecules. The expression levels of miR-126&126* were elevated in normal melanocytes and primary melanoma cell lines, whereas they markedly declined in metastatic cells. Indeed, the restored expression of miR-126&126* in two advanced melanoma cell lines was accompanied by a significant reduction of proliferation, invasion and chemotaxis in vitro as well as of growth and dissemination in vivo. In accordance, the reverse functional effects were obtained by knocking down miR-126&126* by transfecting antisense LNA oligonucleotides in melanoma cells. Looking for the effectors of these antineoplastic functions, we identified ADAM9 and MMP7, two metalloproteases playing a pivotal role in melanoma progression, as direct targets of miR-126&126*. In addition, as ADAM9 and MMP7 share a role in the proteolytic cleavage of the HB-EGF precursor, we looked for the effectiveness of this regulatory pathway in melanoma, confirming the decrease of HB-EGF activation as a consequence of miR-126&126*-dependent downmodulation of ADAM9 and MMP7. Finally, gene profile analyses showed that miR-126&126* reexpression was sufficient to inactivate other key signaling pathways involved in the oncogenic transformation, as PI3K/AKT and MAPK, and to restore melanogenesis, as indicated by KIT/MITF/TYR induction. In view of this miR-126&126* wide-ranging action, we believe that the replacement of these microRNAs might be considered a promising therapeutic approach.


Asunto(s)
Proteínas ADAM/genética , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Metaloproteinasa 7 de la Matriz/genética , Melanoma/genética , Proteínas de la Membrana/genética , MicroARNs/genética , Neoplasias Cutáneas/genética , Proteínas ADAM/metabolismo , Animales , Emparejamiento Base , Secuencia de Bases , Línea Celular Tumoral , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Factor de Crecimiento Similar a EGF de Unión a Heparina , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Metaloproteinasa 7 de la Matriz/metabolismo , Melanocitos/metabolismo , Melanoma/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Osteopontina/genética , Osteopontina/metabolismo , Proteolisis , Interferencia de ARN , Neoplasias Cutáneas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...