Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230016, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38583471

RESUMEN

Forest diversity is the outcome of multiple species-specific processes and tolerances, from regeneration, growth, competition and mortality of trees. Predicting diversity thus requires a comprehensive understanding of those processes. Regeneration processes have traditionally been overlooked, due to high stochasticity and assumptions that recruitment is not limiting for forests. Thus, we investigated the importance of seed production and seedling survival on forest diversity in the Pacific Northwest (PNW) using a forest gap model (ForClim). Equations for regeneration processes were fit to empirical data and added into the model, followed by simulations where regeneration processes and parameter values varied. Adding regeneration processes into ForClim improved the simulation of species composition, compared to Forest Inventory Analysis data. We also found that seed production was not as important as seedling survival, and the time it took for seedlings to grow into saplings was a critical recruitment parameter for accurately capturing tree species diversity in PNW forest stands. However, our simulations considered historical climate only. Due to the sensitivity of seed production and seedling survival to weather, future climate change may alter seed production or seedling survival and future climate change simulations should include these regeneration processes to predict future forest dynamics in the PNW. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Asunto(s)
Bosques , Árboles , Biodiversidad , Plantones , Noroeste de Estados Unidos
2.
Nature ; 627(8004): 564-571, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418889

RESUMEN

Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from methodological limitations related to the use of static data10-12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.


Asunto(s)
Biodiversidad , Bosques , Mapeo Geográfico , Árboles , Modelos Biológicos , Especificidad de la Especie , Árboles/clasificación , Árboles/fisiología , Clima Tropical
3.
Commun Biol ; 6(1): 1066, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857800

RESUMEN

One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species. We further tested for conmycorrhizal density dependence (CMDD) to test for benefit from shared mutualists. We found that the strength of CDD varies systematically with mycorrhizal type, with ectomycorrhizal tree species exhibiting higher sapling densities with increasing adult densities than arbuscular mycorrhizal tree species. Moreover, we found evidence of positive CMDD for tree species of both mycorrhizal types. Collectively, these findings indicate that mycorrhizal interactions likely play a foundational role in global forest diversity patterns and structure.


Asunto(s)
Micorrizas , Retroalimentación , Simbiosis , Plantas/microbiología , Suelo
4.
Nat Plants ; 9(7): 1044-1056, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37386149

RESUMEN

The benefits of masting (volatile, quasi-synchronous seed production at lagged intervals) include satiation of seed predators, but these benefits come with a cost to mutualist pollen and seed dispersers. If the evolution of masting represents a balance between these benefits and costs, we expect mast avoidance in species that are heavily reliant on mutualist dispersers. These effects play out in the context of variable climate and site fertility among species that vary widely in nutrient demand. Meta-analyses of published data have focused on variation at the population scale, thus omitting periodicity within trees and synchronicity between trees. From raw data on 12 million tree-years worldwide, we quantified three components of masting that have not previously been analysed together: (i) volatility, defined as the frequency-weighted year-to-year variation; (ii) periodicity, representing the lag between high-seed years; and (iii) synchronicity, indicating the tree-to-tree correlation. Results show that mast avoidance (low volatility and low synchronicity) by species dependent on mutualist dispersers explains more variation than any other effect. Nutrient-demanding species have low volatility, and species that are most common on nutrient-rich and warm/wet sites exhibit short periods. The prevalence of masting in cold/dry sites coincides with climatic conditions where dependence on vertebrate dispersers is less common than in the wet tropics. Mutualist dispersers neutralize the benefits of masting for predator satiation, further balancing the effects of climate, site fertility and nutrient demands.


Asunto(s)
Reproducción , Árboles , Fertilidad , Semillas , Saciedad
5.
Ecol Lett ; 25(6): 1471-1482, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35460530

RESUMEN

Lack of tree fecundity data across climatic gradients precludes the analysis of how seed supply contributes to global variation in forest regeneration and biotic interactions responsible for biodiversity. A global synthesis of raw seedproduction data shows a 250-fold increase in seed abundance from cold-dry to warm-wet climates, driven primarily by a 100-fold increase in seed production for a given tree size. The modest (threefold) increase in forest productivity across the same climate gradient cannot explain the magnitudes of these trends. The increase in seeds per tree can arise from adaptive evolution driven by intense species interactions or from the direct effects of a warm, moist climate on tree fecundity. Either way, the massive differences in seed supply ramify through food webs potentially explaining a disproportionate role for species interactions in the wet tropics.


Asunto(s)
Bosques , Árboles , Biodiversidad , Clima , Fertilidad , Semillas
6.
New Phytol ; 234(5): 1664-1677, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35201608

RESUMEN

Tree size shapes forest carbon dynamics and determines how trees interact with their environment, including a changing climate. Here, we conduct the first global analysis of among-site differences in how aboveground biomass stocks and fluxes are distributed with tree size. We analyzed repeat tree censuses from 25 large-scale (4-52 ha) forest plots spanning a broad climatic range over five continents to characterize how aboveground biomass, woody productivity, and woody mortality vary with tree diameter. We examined how the median, dispersion, and skewness of these size-related distributions vary with mean annual temperature and precipitation. In warmer forests, aboveground biomass, woody productivity, and woody mortality were more broadly distributed with respect to tree size. In warmer and wetter forests, aboveground biomass and woody productivity were more right skewed, with a long tail towards large trees. Small trees (1-10 cm diameter) contributed more to productivity and mortality than to biomass, highlighting the importance of including these trees in analyses of forest dynamics. Our findings provide an improved characterization of climate-driven forest differences in the size structure of aboveground biomass and dynamics of that biomass, as well as refined benchmarks for capturing climate influences in vegetation demographic models.


Asunto(s)
Carbono , Clima Tropical , Biomasa , Temperatura , Madera
7.
Glob Chang Biol ; 28(9): 2895-2909, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35080088

RESUMEN

The growth and survival of individual trees determine the physical structure of a forest with important consequences for forest function. However, given the diversity of tree species and forest biomes, quantifying the multitude of demographic strategies within and across forests and the way that they translate into forest structure and function remains a significant challenge. Here, we quantify the demographic rates of 1961 tree species from temperate and tropical forests and evaluate how demographic diversity (DD) and demographic composition (DC) differ across forests, and how these differences in demography relate to species richness, aboveground biomass (AGB), and carbon residence time. We find wide variation in DD and DC across forest plots, patterns that are not explained by species richness or climate variables alone. There is no evidence that DD has an effect on either AGB or carbon residence time. Rather, the DC of forests, specifically the relative abundance of large statured species, predicted both biomass and carbon residence time. Our results demonstrate the distinct DCs of globally distributed forests, reflecting biogeography, recent history, and current plot conditions. Linking the DC of forests to resilience or vulnerability to climate change, will improve the precision and accuracy of predictions of future forest composition, structure, and function.


Asunto(s)
Cambio Climático , Clima Tropical , Biomasa , Demografía , Ecosistema
8.
Glob Chang Biol ; 28(1): 245-266, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34653296

RESUMEN

Tree rings provide an invaluable long-term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree-ring analysis methods were not designed to simultaneously test effects of climate, tree size, and other drivers on individual growth. This has limited the potential to test ecologically relevant hypotheses on tree growth sensitivity to environmental drivers and their interactions with tree size. Here, we develop and apply a new method to simultaneously model nonlinear effects of primary climate drivers, reconstructed tree diameter at breast height (DBH), and calendar year in generalized least squares models that account for the temporal autocorrelation inherent to each individual tree's growth. We analyze data from 3811 trees representing 40 species at 10 globally distributed sites, showing that precipitation, temperature, DBH, and calendar year have additively, and often interactively, influenced annual growth over the past 120 years. Growth responses were predominantly positive to precipitation (usually over ≥3-month seasonal windows) and negative to temperature (usually maximum temperature, over ≤3-month seasonal windows), with concave-down responses in 63% of relationships. Climate sensitivity commonly varied with DBH (45% of cases tested), with larger trees usually more sensitive. Trends in ring width at small DBH were linked to the light environment under which trees established, but basal area or biomass increments consistently reached maxima at intermediate DBH. Accounting for climate and DBH, growth rate declined over time for 92% of species in secondary or disturbed stands, whereas growth trends were mixed in older forests. These trends were largely attributable to stand dynamics as cohorts and stands age, which remain challenging to disentangle from global change drivers. By providing a parsimonious approach for characterizing multiple interacting drivers of tree growth, our method reveals a more complete picture of the factors influencing growth than has previously been possible.


Asunto(s)
Cambio Climático , Bosques , Biomasa , Clima , Temperatura
9.
Ecol Appl ; 32(2): e2507, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34870871

RESUMEN

In an emerging era of megadisturbance, bolstering forest resilience to wildfire, insects, and drought has become a central objective in many western forests. Climate has received considerable attention as a driver of these disturbances, but few studies have examined the complexities of climate-vegetation-disturbance interactions. Current strategies for creating resilient forests often rely on retrospective approaches, seeking to impart resilience by restoring historical conditions to contemporary landscapes, but historical conditions are becoming increasingly unattainable amidst modern bioclimatic conditions. What becomes an appropriate benchmark for resilience when we have novel forests, rapidly changing climate, and unprecedented disturbance regimes? We combined two longitudinal datasets-each representing some of the most comprehensive spatially explicit, annual tree mortality data in existence-in a post-hoc factorial design to examine the nonlinear relationships between fire, climate, forest spatial structure, and bark beetles. We found that while prefire drought elevated mortality risk, advantageous local neighborhoods could offset these effects. Surprisingly, mortality risk (Pm ) was higher in crowded local neighborhoods that burned in wet years (Pm  = 42%) compared with sparse neighborhoods that burned during drought (Pm  = 30%). Risk of beetle attack was also increased by drought, but lower conspecific crowding impeded the otherwise positive interaction between fire and beetle attack. Antecedent fire increased drought-related mortality over short timespans (<7 years) but reduced mortality over longer intervals. These results clarify interacting disturbance dynamics and provide a mechanistic underpinning for forest restoration strategies. Importantly, they demonstrate the potential for managed fire and silvicultural strategies to offset climate effects and bolster resilience to fire, beetles, and drought.


Asunto(s)
Incendios , Árboles , Cambio Climático , Bosques , Distanciamiento Físico , Estudios Retrospectivos
10.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34400503

RESUMEN

Despite its importance for forest regeneration, food webs, and human economies, changes in tree fecundity with tree size and age remain largely unknown. The allometric increase with tree diameter assumed in ecological models would substantially overestimate seed contributions from large trees if fecundity eventually declines with size. Current estimates are dominated by overrepresentation of small trees in regression models. We combined global fecundity data, including a substantial representation of large trees. We compared size-fecundity relationships against traditional allometric scaling with diameter and two models based on crown architecture. All allometric models fail to describe the declining rate of increase in fecundity with diameter found for 80% of 597 species in our analysis. The strong evidence of declining fecundity, beyond what can be explained by crown architectural change, is consistent with physiological decline. A downward revision of projected fecundity of large trees can improve the next generation of forest dynamic models.


Asunto(s)
Fertilidad , Modelos Biológicos , Regeneración , Árboles/crecimiento & desarrollo , Bosques
11.
Ecology ; 102(11): e03495, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34309021

RESUMEN

Mycorrhizal mutualisms are nearly ubiquitous across plant communities. Yet, it is still unknown whether facilitation among plants arises primarily from these mycorrhizal networks or from physical and ecological attributes of plants themselves. Here, we tested the relative contributions of mycorrhizae and plants to both positive and negative biotic interactions to determine whether plant-soil feedbacks with mycorrhizae neutralize competition and enemies within multitrophic forest community networks. We used Bayesian hierarchical generalized linear modeling to examine mycorrhizal-guild-specific and mortality-cause-specific woody plant survival compiled from a spatially and temporally explicit data set comprising 101,096 woody plants from three mixed-conifer forests across western North America. We found positive plant-soil feedbacks for large-diameter trees: species-rich woody plant communities indirectly promoted large tree survival when connected via mycorrhizal networks. Shared mycorrhizae primarily counterbalanced apparent competition mediated by tree enemies (e.g., bark beetles, soil pathogens) rather than diffuse competition between plants. We did not find the same survival benefits for small trees or shrubs. Our findings suggest that lower large-diameter tree mortality susceptibility in species-rich temperate forests resulted from greater access to shared mycorrhizal networks. The interrelated importance of aboveground and belowground biodiversity to large tree survival may be critical for counteracting increasing pathogen, bark beetle, and density threats.


Asunto(s)
Bosques , Micorrizas , Teorema de Bayes , Suelo , Microbiología del Suelo
12.
Nat Commun ; 12(1): 3137, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035260

RESUMEN

Arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations are critical for host-tree performance. However, how mycorrhizal associations correlate with the latitudinal tree beta-diversity remains untested. Using a global dataset of 45 forest plots representing 2,804,270 trees across 3840 species, we test how AM and EcM trees contribute to total beta-diversity and its components (turnover and nestedness) of all trees. We find AM rather than EcM trees predominantly contribute to decreasing total beta-diversity and turnover and increasing nestedness with increasing latitude, probably because wide distributions of EcM trees do not generate strong compositional differences among localities. Environmental variables, especially temperature and precipitation, are strongly correlated with beta-diversity patterns for both AM trees and all trees rather than EcM trees. Results support our hypotheses that latitudinal beta-diversity patterns and environmental effects on these patterns are highly dependent on mycorrhizal types. Our findings highlight the importance of AM-dominated forests for conserving global forest biodiversity.


Asunto(s)
Biodiversidad , Bosques , Micorrizas/fisiología , Árboles/fisiología , Interacciones Microbiota-Huesped/fisiología , Dispersión de las Plantas , Microbiología del Suelo , Árboles/microbiología
14.
Nat Commun ; 12(1): 1242, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33623042

RESUMEN

Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.


Asunto(s)
Cambio Climático , Árboles/fisiología , Fertilidad/fisiología , Geografía , Modelos Teóricos , América del Norte , Estaciones del Año
16.
Ecology ; 102(3): e03259, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33226634

RESUMEN

Recent studies suggest that the mycorrhizal type associated with tree species is an important trait influencing ecological processes such as response to environmental conditions and conspecific negative density dependence (CNDD). However, we lack a general understanding of how tree mycorrhizal type influences CNDD strength and the resulting patterns of species abundance and richness at larger spatial scales. We assessed 305 species across 15 large, stem-mapped, temperate forest dynamics plots in Northeastern China and North America to explore the relationships between tree mycorrhizal type and CNDD, species abundance, and species richness at a regional scale. Tree species associated with arbuscular mycorrhizal (AM) fungi showed a stronger CNDD and a more positive relationship with species abundance than did tree species associated with ectomycorrhizal (ECM) fungi. For each plot, both basal area and stem abundance of AM tree species was lower than that of ECM tree species, suggesting that AM tree species were rarer than ECM tree species. Finally, ECM tree dominance showed a negative effect on plant richness across plots. These results provide evidence that tree mycorrhizal type plays an important role in influencing CNDD and species richness, highlighting this trait as an important factor in structuring plant communities in temperate forests.


Asunto(s)
Micorrizas , China , Bosques , América del Norte , Árboles
17.
Sci Rep ; 10(1): 19961, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203941

RESUMEN

Grassland fire dynamics are subject to myriad climatic, biological, and anthropogenic drivers, thresholds, and feedbacks and therefore do not conform to assumptions of statistical stationarity. The presence of non-stationarity in time series data leads to ambiguous results that can misinform regional-level fire management strategies. This study employs non-stationarity in time series data among multiple variables and multiple intensities using dynamic simulations of autoregressive distributed lag models to elucidate key drivers of climate and ecological change on burned grasslands in Xilingol, China. We used unit root methods to select appropriate estimation methods for further analysis. Using the model estimations, we developed scenarios emulating the effects of instantaneous changes (i.e., shocks) of some significant variables on climate and ecological change. Changes in mean monthly wind speed and maximum temperature produce complex responses on area burned, directly, and through feedback relationships. Our framework addresses interactions among multiple drivers to explain fire and ecosystem responses in grasslands, and how these may be understood and prioritized in different empirical contexts needed to formulate effective fire management policies.

18.
Glob Chang Biol ; 26(12): 6974-6988, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32926493

RESUMEN

Forest ecosystems are an important sink for terrestrial carbon sequestration. Hence, accurate modeling of the intra- and interannual variability of forest photosynthetic productivity remains a key objective in global biology. Applying climate-driven leaf phenology and growth in models may improve predictions of the forest gross primary productivity (GPP). We used a dynamic non-structural carbohydrates (NSC) model (FORCCHN2) that couples leaf development and phenology to investigate the relationships among photosynthesis and environmental factors. FORCCHN2 simulates spring and autumn phenological events from heat and chilling, respectively. Leaf area index data from satellites along with climate data estimated localized phenological parameters. NSC limitation, immediate temperature, accumulated heat, and growth potential comprised a daily leaf-growth model. Functionally, leaf growth was decoupled from photosynthesis. Leaf biomass determined overall photosynthetic production. We compared this model with outputs of the other six terrestrial biospheric models and with observations from the North American Carbon Program Site Interim Synthesis in 18 forest sites. This model improved the predicted performance of yearly GPP with a 57%-210% increase in correlation (median) and up to a 102% reduction in biases (median), compared to three prognostic models and three prescribed models. At the North America continental scale, the model predicted the average annual GPP of 7.38 Pg C/year from forest ecosystems during 1985-2016. The results showed an increasing trend of GPP in North America (1.0 Pg C/decade). The inclusion of climate-driven phenology and growth has a significant potential for improving dynamic vegetation models, and promotes a further understanding of the complex relationship between environment and photosynthesis.


Asunto(s)
Ecosistema , Bosques , Clima , América del Norte , Fotosíntesis , Hojas de la Planta , Estaciones del Año , Estados Unidos
19.
PLoS One ; 15(4): e0229894, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32243439

RESUMEN

The influence of climate change on wildland fire has received considerable attention, but few studies have examined the potential effects of climate variability on grassland area burned within the extensive steppe land of Eurasia. We used a novel statistical approach borrowed from the social science literature-dynamic simulations of autoregressive distributed lag (ARDL) models-to explore the relationship between temperature, relative humidity, precipitation, wind speed, sunlight, and carbon emissions on grassland area burned in Xilingol, a large grassland-dominated landscape of Inner Mongolia in northern China. We used an ARDL model to describe the influence of these variables on observed area burned between 2001 and 2018 and used dynamic simulations of the model to project the influence of climate on area burned over the next twenty years. Our analysis demonstrates that area burned was most sensitive to wind speed and temperature. A 1% increase in wind speed was associated with a 20.8% and 22.8% increase in observed and predicted area burned respectively, while a 1% increase in maximum temperature was associated with an 8.7% and 9.7% increase in observed and predicted future area burned. Dynamic simulations of ARDL models provide insights into the variability of area burned across Inner Mongolia grasslands in the context of anthropogenic climate change.


Asunto(s)
Carbono/metabolismo , Cambio Climático , Clima , Pradera , Carbono/química , China , Simulación por Computador , Humanos , Suelo/química , Luz Solar , Temperatura , Viento
20.
Oecologia ; 191(4): 909-918, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31624959

RESUMEN

Spatial patterns can inform us of forest recruitment, mortality, and tree interactions through time and disturbance. Specifically, successional trajectories of self-thinning and heterospecific negative density dependence can be interpreted from the spatial arrangement of forest stems. We conducted a 50-year spatial analysis of a forest undergoing succession at the ecotone of the southwestern Canadian boreal forest. The forest progressed from early to late sere and experienced repeated severe droughts, forest tent caterpillar outbreaks (Malacosoma disstria), as well as the outbreak of bark beetles. Cumulatively, the forest lost 70% of stems due to natural succession and a combination of disturbance events. Here, we describe spatial patterns displaying signals of successional self-thinning, responses to disturbance, and changes in patterns of density dependence across 50 years. Forest succession and disturbance events resulted in fluctuating patterns of density-dependent mortality and recruitment that persisted into late seral stages. The combined effects of conspecific and heterospecific density-dependent effects on mortality and recruitment resulted in near-spatial equilibrium over the study period. However, the strength and direction of these demographic and spatial processes varied in response with time and disturbance severity. The outbreak of forest tent caterpillar, pronounced drought, and bark beetles combined to reduce stand aggregation and promote a spatial equilibrium. Density-dependent processes of competition and facilitation changed in strength and direction with succession of the plot and in combination with disturbance. Together these results reinforce the importance of successional stage and disturbance to spatial patterns.


Asunto(s)
Bosques , Árboles , Canadá , Sequías , Análisis Espacial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA