RESUMEN
BACKGROUND: Aficamten, a novel cardiac myosin inhibitor, reversibly reduces cardiac hypercontractility in obstructive hypertrophic cardiomyopathy. We present a prespecified analysis of the pharmacokinetics, pharmacodynamics, and safety of aficamten in SEQUOIA-HCM (Safety, Efficacy, and Quantitative Understanding of Obstruction Impact of Aficamten in HCM). METHODS AND RESULTS: A total of 282 patients with obstructive hypertrophic cardiomyopathy were randomized 1:1 to daily aficamten (5-20 mg) or placebo between February 1, 2022, and May 15, 2023. Aficamten dosing targeted the lowest effective dose for achieving site-interpreted Valsalva left ventricular outflow tract gradient <30 mm Hg with left ventricular ejection fraction (LVEF) ≥50%. End points were evaluated during titration (day 1 to week 8), maintenance (weeks 8-24), and washout (weeks 24-28), and included major adverse cardiac events, new-onset atrial fibrillation, implantable cardioverter-defibrillator discharges, LVEF <50%, and treatment-emergent adverse events. At week 8, 3.6%, 12.9%, 35%, and 48.6% of patients achieved 5-, 10-, 15-, and 20-mg doses, respectively. Baseline characteristics were similar across groups. Aficamten concentration increased by dose and remained stable during maintenance. During the treatment period, LVEF decreased by -0.9% (95% CI, -1.3 to -0.6) per 100 ng/mL aficamten exposure. Seven (4.9%) patients taking aficamten underwent per-protocol dose reduction for site-interpreted LVEF <50%. There were no treatment interruptions or heart failure worsening for LVEF <50%. No major adverse cardiovascular events were associated with aficamten, and treatment-emergent adverse events were similar between treatment groups, including atrial fibrillation. CONCLUSIONS: A site-based dosing algorithm targeting the lowest effective aficamten dose reduced left ventricular outflow tract gradient with a favorable safety profile throughout SEQUOIA-HCM. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique Identifier: NCT05186818.
Asunto(s)
Cardiomiopatía Hipertrófica , Volumen Sistólico , Función Ventricular Izquierda , Humanos , Cardiomiopatía Hipertrófica/fisiopatología , Cardiomiopatía Hipertrófica/tratamiento farmacológico , Cardiomiopatía Hipertrófica/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Anciano , Función Ventricular Izquierda/efectos de los fármacos , Volumen Sistólico/efectos de los fármacos , Resultado del Tratamiento , Método Doble Ciego , Relación Dosis-Respuesta a Droga , Adulto , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/fisiopatología , Bencilaminas , Uracilo/análogos & derivadosRESUMEN
Remdesivir (RDV, Veklury®) is a once-daily, nucleoside ribonucleic acid polymerase inhibitor of severe acute respiratory syndrome coronavirus 2 replication. Remdesivir has been granted approvals in several countries for use in adults and children hospitalized with severe coronavirus disease 2019 (COVID-19). Inside the cell, remdesivir undergoes metabolic activation to form the intracellular active triphosphate metabolite, GS-443902 (detected in peripheral blood mononuclear cells), and ultimately, the renally eliminated plasma metabolite GS-441524. This review discusses the pre-clinical pharmacology of RDV, clinical pharmacokinetics, pharmacodynamics/concentration-QT analysis, rationale for dose selection for treatment of patients with COVID-19, and drug-drug interaction potential based on available in vitro and clinical data in healthy volunteers. Following single-dose intravenous administration over 2 h of an RDV solution formulation across the dose range of 3-225 mg in healthy participants, RDV and its metabolites (GS-704277and GS-441524) exhibit linear pharmacokinetics. Following multiple doses of RDV 150 mg once daily for 7 or 14 days, major metabolite GS-441524 accumulates approximately 1.9-fold in plasma. Based on pharmacokinetic bridging from animal data and available human data in healthy volunteers, the RDV clinical dose regimen of a 200-mg loading dose on day 1 followed by 100-mg maintenance doses for 4 or 9 days was selected for further evaluation of pharmacokinetics and safety. Results showed high intracellular concentrations of GS-443902 suggestive of efficient conversion from RDV into the triphosphate form, and further supporting this clinical dosing regimen for the treatment of COVID-19. Mathematical drug-drug interaction liability predictions, based on in vitro and phase I data, suggest RDV has low potential for drug-drug interactions, as the impact of inducers or inhibitors on RDV disposition is minimized by the parenteral route of administration and extensive extraction. Using physiologically based pharmacokinetic modeling, RDV is not predicted to be a clinically significant inhibitor of drug-metabolizing enzymes or transporters in patients infected with COVID-19 at therapeutic RDV doses.
Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Adenosina/análogos & derivados , Adenosina Monofosfato/farmacocinética , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Adulto , Alanina/farmacocinética , Alanina/farmacología , Alanina/uso terapéutico , Animales , Antivirales/farmacocinética , Área Bajo la Curva , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Furanos/metabolismo , Semivida , Humanos , Tasa de Depuración Metabólica , Pirroles/metabolismo , SARS-CoV-2 , Triazinas/metabolismoRESUMEN
Severe coronavirus disease 2019 (COVID-19) disease, including multisystem inflammatory syndrome, has been reported in children. This report summarizes development of a remdesivir physiologically-based pharmacokinetic (PBPK) model that accurately describes observed adult remdesivir and metabolites exposure and predicts pediatric remdesivir and metabolites exposure. The adult PBPK model was applied to predict pediatric remdesivir and metabolites steady-state exposures using the Pediatric Population Model in SimCYP and incorporated the relevant physiologic and mechanistic information. Model development was based on adult phase I exposure data in healthy volunteers who were administered a 200-mg loading dose of remdesivir intravenous (IV) over 0.5 hours on Day 1, then 100-mg daily maintenance doses of IV over 0.5 hours starting on Day 2 and continuing through Days 5 or 10. Simulations indicated that use of the adult therapeutic remdesivir dosage regimen (200-mg loading dose on Day 1 then 100-mg daily maintenance dose starting on Day 2) in pediatric patients ≥ 40 kg and a weight-based remdesivir dosage regimen (5-mg/kg loading dose on Day 1 then 2.5-mg/kg daily maintenance dose starting on Day 2) in pediatric patients weighing 2.5 to < 40 kg is predicted to maintain therapeutic exposures of remdesivir and its metabolites. The comprehensive PBPK model described in this report supported remdesivir dosing in planned pediatric clinical studies and dosing in the emergency use authorization and pediatric compassionate use programs that were initiated to support remdesivir as a treatment option during the pandemic.
Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/administración & dosificación , Antivirales/farmacocinética , Tratamiento Farmacológico de COVID-19 , Adenosina Monofosfato/administración & dosificación , Adenosina Monofosfato/farmacocinética , Adenosina Monofosfato/uso terapéutico , Adolescente , Alanina/administración & dosificación , Alanina/farmacocinética , Alanina/uso terapéutico , Antivirales/uso terapéutico , Área Bajo la Curva , Peso Corporal , Niño , Preescolar , Simulación por Computador , Cálculo de Dosificación de Drogas , Femenino , Humanos , Lactante , Masculino , Modelos Biológicos , Pandemias , SARS-CoV-2RESUMEN
There is an increasing interest in transporter induction (i.e., decreased systemic drug exposure due to increased efflux-limited absorption or transporter-mediated clearance) as a mechanism of drug-drug interactions (DDIs), although evidence of clinical relevance is still evolving. Intestinal P-glycoprotein (P-gp) and hepatic organic anion transporting polypeptides 1B (OATP1B) can be important determinants of drug absorption and disposition, as well as targets for DDIs. Current data indicate that intestinal P-gp protein levels can be induced up to threefold to fourfold in humans primarily with pregnane X receptor (PXR) activators, and that this induction can decrease the systemic exposure of drugs with P-gp efflux-limited absorption (e.g., ≤ 67% decrease in the exposure of total dabigatran following rifampin multiple oral dosing). Evaluation of the clinical relevance of P-gp induction as a DDI mechanism must consider the induction potential of the perpetrator drug for P-gp and attenuation of exposure of the victim drug in the context of its therapeutic window. Practical drug development recommendations are provided herein. Reports are contradictory on OATP1B induction by PXR activators in human hepatocytes and liver biopsies. Some clinical investigations demonstrated that rifampin pretreatment decreased exposure of OATP1B substrates, while other studies found no differences, and the potential involvement of other mechanisms in these observed DDIs cannot be definitively ruled out. Thus, further studies are needed to understand hepatic OATP1B induction and potential involvement of other mechanisms contributing to reduced exposure of OATP1B substrates. This review critically summarizes the state-of-the-art on intestinal P-gp and hepatic OATP1B induction, and highlights implications for drug development.
Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Desarrollo de Medicamentos/métodos , Intestinos/fisiología , Transportador 1 de Anión Orgánico Específico del Hígado/metabolismo , Hígado/metabolismo , Transporte Biológico/fisiología , Hepatocitos/metabolismo , Humanos , Proteínas de Transporte de Membrana/metabolismoRESUMEN
Firsocostat (FIR: previously GS-0976), a highly sensitive OATP substrate, reduces hepatic de novo lipogenesis (DNL) by inhibiting acetyl-CoA carboxylases (ACC). Measuring the pharmacodynamic (PD) efficacy of FIR on DNL provides a unique opportunity to determine optimal dosing strategies for liver-targeted OATP substrates in settings of altered OATP function. A randomized, four-way crossover drug-drug interaction study was conducted. Hepatic DNL, a marker for ACC activity, was measured in 28 healthy volunteers after reference, single dose FIR 10 mg, FIR 10 mg plus the OATP inhibitor rifampin (RIF) 300 mg i.v., or RIF 300 mg i.v. (control for DNL effect of RIF), each separated by a 7-day washout. Samples were collected for pharmacokinetic (PK) and PD assessments through 24 hours after each treatment. Hepatic DNL and its inhibition by FIR were assessed. Twenty-four subjects completed the study. All adverse events were mild. RIF alone increased hepatic DNL area under the effect curve from time of administration up to the time of the last quantifiable concentration (AUEClast ; 35.7%). Despite a 5.2-fold increase in FIR plasma exposure (area under the concentration-time curve from zero to infinity (AUCinf )) when administered with RIF, FIR alone, and FIR + RIF had the same hepatic PD effect, 37.1% and 34.9% reduction in DNL AUEClast , respectively, compared with their respective controls. These findings indicate that large decreases in OATP activity do not alter hepatic intracellular exposure (as inferred by no change in PD) for drugs that are primarily eliminated hepatically and permeability rate-limited, such as FIR. These results support PK theory that has been difficult to test and provide practical guidance on administration of liver-targeted drugs in settings of reduced OATP function.
Asunto(s)
Isobutiratos/farmacocinética , Hígado/efectos de los fármacos , Transportadores de Anión Orgánico/antagonistas & inhibidores , Oxazoles/farmacocinética , Pirimidinas/farmacocinética , Adulto , Interacciones Farmacológicas , Femenino , Humanos , Isobutiratos/administración & dosificación , Isobutiratos/efectos adversos , Isobutiratos/sangre , Hígado/metabolismo , Masculino , Persona de Mediana Edad , Oxazoles/administración & dosificación , Oxazoles/efectos adversos , Oxazoles/sangre , Pirimidinas/administración & dosificación , Pirimidinas/efectos adversos , Pirimidinas/sangre , Rifampin/farmacologíaRESUMEN
BACKGROUND: Selgantolimod is a novel oral, selective Toll-like receptor 8 (TLR8) agonist in development for the treatment of chronic hepatitis B (CHB). TLR8 is an endosomal innate immune receptor and a target for treatment of viral infections. This first-in-human study investigated the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) of selgantolimod in healthy volunteers. METHODS: Of 71 subjects enrolled, 59 received a single dose of selgantolimod (0.5, 1.5, 3 or 5 mg) or placebo, and 12 were evaluated for food effect. Safety, PK and PD activity by induction of cytokines, chemokines and acute phase proteins were assessed. PK/PD analyses were conducted. RESULTS: Single doses of 0.5-5 mg were generally safe. No serious adverse events (AEs) or AEs leading to discontinuation were reported, and most were Grade 1 in severity. Selgantolimod displayed rapid absorption and dose-proportional PK and PD activity. Food had minimal effect on PK but resulted in diminished PD activity. In PK/PD analyses, near-saturation of induction for most evaluated biomarkers occurred at the 5-mg dose. CONCLUSIONS: Single doses of up to 5 mg selgantolimod were safe and induced dose-dependent PD responses. These data support evaluation of selgantolimod in combination with other agents in future clinical studies of CHB. Australian New Zealand Clinical Trials Registration: ACTRN12616001646437.
Asunto(s)
Antivirales/farmacología , Hexanoles/farmacología , Pirimidinas/farmacología , Receptor Toll-Like 8/agonistas , Administración Oral , Adulto , Antivirales/administración & dosificación , Antivirales/efectos adversos , Antivirales/farmacocinética , Quimiocinas/sangre , Relación Dosis-Respuesta a Droga , Femenino , Hepatitis B Crónica/tratamiento farmacológico , Hexanoles/administración & dosificación , Hexanoles/efectos adversos , Hexanoles/farmacocinética , Humanos , Proteína Antagonista del Receptor de Interleucina 1/sangre , Interleucina-12/sangre , Masculino , Pirimidinas/administración & dosificación , Pirimidinas/efectos adversos , Pirimidinas/farmacocinética , Adulto JovenRESUMEN
BACKGROUND: Bruton's tyrosine kinase (BTK) is a key component of the B-cell receptor (BCR) pathway and a clinically validated target for small molecule inhibitors such as ibrutinib in the treatment of B-cell malignancies. Tirabrutinib (GS-4059/ONO-4059) is a selective, once daily, oral BTK inhibitor with clinical activity against many relapsed/refractory B-cell malignancies. METHODS: Covalent binding of tirabrutinib to BTK Cys-481 was assessed by LC-MSMS analysis of BTK using compound as a variable modification search parameter. Inhibition potency of tirabrutinib, ibrutinib, acalabrutinib, and spebrutinib against BTK and related kinases was studied in a dose-dependent manner either after a fixed incubation time (as used in conventional IC50 studies) or following a time course where inactivation kinetics were measured. RESULTS: Tirabrutinib irreversibly and covalently binds to BTK Cys-481. The inactivation efficiency kinact/Ki was measured and used to calculate selectivity among different kinases for each of the four inhibitors studied. Tirabrutinib showed a kinact/Ki value of 2.4 ± 0.6 × 104 M-1 s-1 for BTK with selectivity against important off-targets. CONCLUSIONS: For the BTK inhibitors tested in this study, analysis of the inactivation kinetics yielded a more accurate measurement of potency and selectivity than conventional single-time point inhibition measurements. Subtle but clear differences were identified between clinically tested BTK inhibitors which may translate into differentiated clinical efficacy and safety. GENERAL SIGNIFICANCE: This is the first study that offers a detailed side-by-side comparison of four clinically-relevant BTK inhibitors with respect to their inactivation of BTK and related kinases.
Asunto(s)
Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Imidazoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Agammaglobulinemia Tirosina Quinasa/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Imidazoles/química , Cinética , Espectrometría de Masas , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Pirimidinas/química , Relación Estructura-ActividadRESUMEN
Rifampin demonstrated dose-dependent relative induction between cytochrome P (CYP)3A and P-glycoprotein (P-gp), organic anion transporting polypeptides (OATPs), or CYP2C9; P-gp, OATP, and CYP2C9 induction was one drug-drug interaction (DDI) category lower than that observed for CYP3A across a wide range of pregnane X receptor (PXR) agonism. The objective of this study was to determine if these relationships could be utilized to predict transporter induction by other CYP3A inducers (rifabutin and carbamazepine) and of another P-gp substrate, sofosbuvir. Healthy subjects received sofosbuvir and a six-probe drug cassette before and after 300 mg q.d. rifabutin or 300 mg b.i.d. carbamazepine. Induction of P-gp, CYP2C9, and decreased sofosbuvir exposure were successfully predicted by observed CYP3A induction. Carbamazepine induction of OATP was underpredicted, likely due to reported additional non-PXR agonism. The results demonstrate that the effect of a PXR agonist on CYP3A can be leveraged to inform on induction liability for other primarily PXR-regulated P450s/transporters, allowing for prioritization of targeted DDI assessments during new drug development.
Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/agonistas , Carbamazepina/administración & dosificación , Citocromo P-450 CYP3A/biosíntesis , Inductores de las Enzimas del Citocromo P-450/administración & dosificación , Moduladores del Transporte de Membrana/administración & dosificación , Receptor X de Pregnano/agonistas , Rifabutina/administración & dosificación , Rifampin/administración & dosificación , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Adolescente , Adulto , Biotransformación , Carbamazepina/efectos adversos , Simulación por Computador , Citocromo P-450 CYP2C9/biosíntesis , Inductores de las Enzimas del Citocromo P-450/efectos adversos , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Inducción Enzimática , Femenino , Voluntarios Sanos , Humanos , Masculino , Moduladores del Transporte de Membrana/efectos adversos , Persona de Mediana Edad , Modelos Biológicos , Transportadores de Anión Orgánico/agonistas , Transportadores de Anión Orgánico/metabolismo , Receptor X de Pregnano/metabolismo , Rifabutina/efectos adversos , Rifampin/efectos adversos , Medición de Riesgo , Sofosbuvir/metabolismo , Especificidad por Sustrato , Adulto JovenRESUMEN
Drug transporter and cytochrome P450 expression is regulated by shared nuclear receptors and, hence, an inducer should induce both, although the magnitude may differ. The objective of this study was to establish relative induction relationships between CYP3A and drug transporters (P-glycoprotein (P-gp), organic anion transporting polypeptide (OATP), and breast cancer resistance protein (BCRP)) or other P450s (CYP2C9 and CYP1A2) using ascending doses of the prototypical pregnane xenobiotic receptor (PXR) agonist, rifampin, to elicit weak, moderate, and strong PXR agonism. Healthy subjects received dabigatran etexilate, pravastatin, rosuvastatin, and a midazolam/tolbutamide/caffeine cocktail before and after rifampin 2, 10, 75, or 600 mg q.d. Unlike CYP3A, only moderate induction of P-gp, OATP, and CYP2C9 was observed and dose-dependent induction of P-gp, OATP, and CYP2C9 was always one drug-drug interaction category lower than observed for CYP3A, even when correcting for probe drug sensitivity. Data from this study establish proof-of-concept that P450 induction data can be leveraged to inform on the effect on transporters.
Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/agonistas , Citocromo P-450 CYP3A/biosíntesis , Inductores de las Enzimas del Citocromo P-450/administración & dosificación , Moduladores del Transporte de Membrana/administración & dosificación , Receptor X de Pregnano/agonistas , Rifampin/administración & dosificación , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Adolescente , Adulto , Biotransformación , Simulación por Computador , Inductores de las Enzimas del Citocromo P-450/efectos adversos , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Inducción Enzimática , Femenino , Voluntarios Sanos , Humanos , Masculino , Moduladores del Transporte de Membrana/efectos adversos , Persona de Mediana Edad , Modelos Biológicos , Transportadores de Anión Orgánico/agonistas , Transportadores de Anión Orgánico/metabolismo , Farmacocinética , Receptor X de Pregnano/metabolismo , Rifampin/efectos adversos , Medición de Riesgo , Especificidad por Sustrato , Adulto JovenRESUMEN
AIM: This open-label study investigated the effect of belatacept on cytokine levels and on the pharmacokinetics of caffeine, losartan, omeprazole, dextromethorphan and midazolam, as CYP probe substrates after oral administration of the Inje cocktail in healthy volunteers. METHODS: Twenty-two evaluable subjects received the Inje cocktail on Days 1, 4, 7 and 11 and belatacept infusion on Day 4. RESULTS: Since belatacept caused no major alterations to cytokine levels, there were no major effects on CYP-substrate pharmacokinetics, except for a slight (16-30%) increase in omeprazole exposure, which was probably due to omeprazole-mediated, time-dependent CYP inhibition. Belatacept did not cause major alterations in the pharmacokinetics, as measured by the geometric mean ratios and associated 90% confidence interval for area under the plasma concentration -time curve from time zero to infinity on Day 7 comparing administration with and without belatacept for caffeine (1.002 [0.914, 1.098]), dextromethorphan (1.031 [0.885, 1.200]), losartan (1.016 [0.938, 1.101)], midazolam (0.968 [0.892, 1.049]) or their respective metabolites. CONCLUSIONS: Therefore, no dose adjustments of CYP substrates are indicated with belatacept coadministration.
Asunto(s)
Abatacept/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Citocinas/metabolismo , Inmunosupresores/farmacología , Adulto , Área Bajo la Curva , Sistema Enzimático del Citocromo P-450/efectos de los fármacos , Interacciones Farmacológicas , Femenino , Humanos , Masculino , Farmacocinética , Factores de Tiempo , Adulto JovenRESUMEN
Cellular retinoic acid binding proteins (CRABPs) bind all-trans-retinoic acid (atRA) tightly. This study aimed to determine whether atRA is channeled directly to cytochrome P450 (CYP) CYP26B1 by CRABPs, and whether CRABPs interact directly with CYP26B1. atRA bound to CRABPs (holo-CRABP) was efficiently metabolized by CYP26B1. Isotope dilution experiments showed that delivery of atRA to CYP26B1 in solution was similar with or without CRABP. Holo-CRABPs had higher affinity for CYP26B1 than free atRA, but both apo-CRABPs inhibited the formation of 4-OH-RA by CYP26B1. Similar protein-protein interactions between soluble binding proteins and CYPs may be important for other lipophilic CYP substrates.
Asunto(s)
Mapas de Interacción de Proteínas/genética , Receptores de Ácido Retinoico/metabolismo , Ácido Retinoico 4-Hidroxilasa/metabolismo , Tretinoina/metabolismo , Secuencia de Aminoácidos/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica , Humanos , Cinética , Receptores de Ácido Retinoico/genética , Ácido Retinoico 4-Hidroxilasa/química , Ácido Retinoico 4-Hidroxilasa/genética , Proteínas Celulares de Unión al Retinol/genética , Proteínas Celulares de Unión al Retinol/metabolismo , Especificidad por Sustrato , Tretinoina/químicaRESUMEN
AIM: We sought to discover endogenous urinary biomarkers of human CYP2D6 activity. PATIENTS & METHODS: Healthy pediatric subjects (n = 189) were phenotyped using dextromethorphan and randomized for candidate biomarker selection and validation. Global urinary metabolomics was performed using liquid chromatography quadrupole time-of-flight mass spectrometry. Candidate biomarkers were tested in adults receiving fluoxetine, a CYP2D6 inhibitor. RESULTS: A biomarker, M1 (m/z 444.3102) was correlated with CYP2D6 activity in both the pediatric training and validation sets. Poor metabolizers had undetectable levels of M1, whereas it was present in subjects with other phenotypes. In adult subjects, a 9.56-fold decrease in M1 abundance was observed during CYP2D6 inhibition. CONCLUSION: Identification and validation of M1 may provide a noninvasive means of CYP2D6 phenotyping.
Asunto(s)
Biomarcadores/orina , Citocromo P-450 CYP2D6/genética , Fluoxetina/administración & dosificación , Metabolómica , Adolescente , Adulto , Niño , Inhibidores del Citocromo P-450 CYP2D6/administración & dosificación , Dextrometorfano/orina , Dextrorfano/orina , Femenino , Voluntarios Sanos , Humanos , MasculinoRESUMEN
Malaria parasites are transmitted by mosquitoes, and blocking parasite transmission is critical in reducing or eliminating malaria in endemic regions. Here, we report the pharmacological characterization of a new class of malaria transmission-blocking compounds that acts via the inhibition of Plasmodia CDPK4 enzyme. We demonstrate that these compounds achieved selectivity over mammalian kinases by capitalizing on a small serine gatekeeper residue in the active site of the Plasmodium CDPK4 enzyme. To directly confirm the mechanism of action of these compounds, we generated P. falciparum parasites that express a drug-resistant methionine gatekeeper (S147 M) CDPK4 mutant. Mutant parasites showed a shift in exflagellation EC50 relative to the wild-type strains in the presence of compound 1294, providing chemical-genetic evidence that CDPK4 is the target of the compound. Pharmacokinetic analyses suggest that coformulation of this transmission-blocking agent with asexual stage antimalarials such as artemisinin combination therapy (ACT) is a promising option for drug delivery that may reduce transmission of malaria including drug-resistant strains. Ongoing studies include refining the compounds to improve efficacy and toxicological properties for efficient blocking of malaria transmission.
Asunto(s)
Antimaláricos/metabolismo , Inhibidores Enzimáticos/metabolismo , Plasmodium falciparum/efectos de los fármacos , Proteínas Quinasas/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Animales , Antimaláricos/aislamiento & purificación , Antimaláricos/farmacocinética , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/farmacocinética , Flagelos/efectos de los fármacos , Flagelos/fisiología , Ratones , Plasmodium falciparum/fisiologíaRESUMEN
Recent guidance on drug-drug interaction (DDI) testing recommends evaluation of circulating metabolites. However, there is little consensus on how to quantitatively predict and/or assess the risk of in vivo DDIs by multiple time-dependent inhibitors (TDIs) including metabolites from in vitro data. Fluoxetine was chosen as the model drug to evaluate the role of TDI metabolites in DDI prediction because it is a TDI of both CYP3A4 and CYP2C19 with a circulating N-dealkylated inhibitory metabolite, norfluoxetine. In pooled human liver microsomes, both enantiomers of fluoxetine and norfluoxetine were TDIs of CYP2C19, (S)-norfluoxetine was the most potent inhibitor with time-dependent inhibition affinity constant (KI) of 7 µM, and apparent maximum time-dependent inhibition rate (k(inact,app)) of 0.059 min(-1). Only (S)-fluoxetine and (R)-norfluoxetine were TDIs of CYP3A4, with (R)-norfluoxetine being the most potent (K(I) = 8 µM, and k(inact,app) = 0.011 min(-1)). Based on in-vitro-to-in-vivo predictions, (S)-norfluoxetine plays the most important role in in vivo CYP2C19 DDIs, whereas (R)-norfluoxetine is most important in CYP3A4 DDIs. Comparison of two multiple TDI prediction models demonstrated significant differences between them in in-vitro-to-in-vitro predictions but not in in-vitro-to-in-vivo predictions. Inclusion of all four inhibitors predicted an in vivo decrease in CYP2C19 (95%) and CYP3A4 (60-62%) activity. The results of this study suggest that adequate worst-case risk assessment for in vivo DDIs by multiple TDI systems can be achieved by incorporating time-dependent inhibition by both parent and metabolite via simple addition of the in vivo time-dependent inhibition rate/cytochrome P450 degradation rate constant (λ/k(deg)) values, but quantitative DDI predictions will require a more thorough understanding of TDI mechanisms.
Asunto(s)
Hidrocarburo de Aril Hidroxilasas/antagonistas & inhibidores , Inhibidores del Citocromo P-450 CYP3A , Fluoxetina/análogos & derivados , Fluoxetina/farmacología , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP3A , Sistema Enzimático del Citocromo P-450/metabolismo , Interacciones Farmacológicas/fisiología , Humanos , Microsomas Hepáticos/metabolismo , Medición de Riesgo , EstereoisomerismoRESUMEN
The aim of this study was to evaluate the contribution of metabolites to drug-drug interactions (DDI) using the inhibition of CYP2C19 and CYP3A4 by omeprazole and its metabolites as a model. Of the metabolites identified in vivo, 5-hydroxyomeprazole, 5'-O-desmethylomeprazole, omeprazole sulfone, and carboxyomeprazole had a metabolite to parent area under the plasma concentration-time curve (AUC(m)/AUC(p)) ratio ≥ 0.25 when either total or unbound concentrations were measured after a single 20-mg dose of omeprazole in a cocktail. All of the metabolites inhibited CYP2C19 and CYP3A4 reversibly. In addition omeprazole, omeprazole sulfone, and 5'-O-desmethylomeprazole were time dependent inhibitors (TDI) of CYP2C19, whereas omeprazole and 5'-O-desmethylomeprazole were found to be TDIs of CYP3A4. The in vitro inhibition constants and in vivo plasma concentrations were used to evaluate whether characterization of the metabolites affected DDI risk assessment. Identifying omeprazole as a TDI of both CYP2C19 and CYP3A4 was the most important factor in DDI risk assessment. Consideration of reversible inhibition by omeprazole and its metabolites would not identify DDI risk with CYP3A4, and with CYP2C19, reversible inhibition values would only identify DDI risk if the metabolites were included in the assessment. On the basis of inactivation data, CYP2C19 and CYP3A4 inhibition by omeprazole would be sufficient to identify risk, but metabolites were predicted to contribute 30-63% to the in vivo hepatic interactions. Therefore, consideration of metabolites may be important in quantitative predictions of in vivo DDIs. The results of this study show that, although metabolites contribute to in vivo DDIs, their relative abundance in circulation or logP values do not predict their contribution to in vivo DDI risk.
Asunto(s)
Hidrocarburo de Aril Hidroxilasas/antagonistas & inhibidores , Inhibidores del Citocromo P-450 CYP3A , Inhibidores Enzimáticos/farmacología , Omeprazol/análogos & derivados , Omeprazol/metabolismo , Omeprazol/farmacología , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP3A , Interacciones Farmacológicas , Inhibidores Enzimáticos/metabolismo , HumanosRESUMEN
Drugs that are mainly cleared by a single enzyme are considered more sensitive to drug-drug interactions (DDIs) than drugs cleared by multiple pathways. However, whether this is true when a drug cleared by multiple pathways is coadministered with an inhibitor of multiple P450 enzymes (multi-P450 inhibition) is not known. Mathematically, simultaneous equipotent inhibition of two elimination pathways that each contribute half of the drug clearance is equal to equipotent inhibition of a single pathway that clears the drug. However, simultaneous strong or moderate inhibition of two pathways by a single inhibitor is perceived as an unlikely scenario. The aim of this study was (i) to identify P450 inhibitors currently in clinical use that can inhibit more than one clearance pathway of an object drug in vivo and (ii) to evaluate the magnitude and predictability of DDIs caused by these multi-P450 inhibitors. Multi-P450 inhibitors were identified using the Metabolism and Transport Drug Interaction Database. A total of 38 multi-P450 inhibitors, defined as inhibitors that increased the AUC or decreased the clearance of probes of two or more P450s, were identified. Seventeen (45%) multi-P450 inhibitors were strong inhibitors of at least one P450, and an additional 12 (32%) were moderate inhibitors of one or more P450s. Only one inhibitor (fluvoxamine) was a strong inhibitor of more than one enzyme. Fifteen of the multi-P450 inhibitors also inhibit drug transporters in vivo, but such data are lacking on many of the inhibitors. Inhibition of multiple P450 enzymes by a single inhibitor resulted in significant (>2-fold) clinical DDIs with drugs that are cleared by multiple pathways such as imipramine and diazepam, while strong P450 inhibitors resulted in only weak DDIs with these object drugs. The magnitude of the DDIs between multi-P450 inhibitors and diazepam, imipramine, and omeprazole could be predicted using in vitro data with similar accuracy as probe substrate studies with the same inhibitors. The results of this study suggest that inhibition of multiple clearance pathways in vivo is clinically relevant, and the risk of DDIs with object drugs may be best evaluated in studies using multi-P450 inhibitors.
Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450 , Inhibidores Enzimáticos/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Relación Estructura-ActividadRESUMEN
INTRODUCTION: Predictions of drug-drug interactions (DDIs) are commonly performed for single inhibitors, but interactions involving multiple inhibitors also frequently occur. Predictions of such interactions involving stereoisomer pairs, parent/metabolite combinations and simultaneously administered multiple inhibitors are increasing in importance. This review provides the framework for predicting inhibitory DDIs of multiple inhibitors with any combination of reversible inhibition mechanism. AREAS COVERED: The review provides an overview of the reliability of the in vitro determined reversible inhibition mechanism. Furthermore, the article provides a method to predict DDIs for multiple reversible inhibitors that allows substituting the inhibition constant (K(i)) with an inhibitor affinity (IC(50)) value determined at S << K(M). EXPERT OPINION: A better understanding and the prediction methods of DDIs, resulting from multiple inhibitors, are important. The inhibition mechanism of a reversible inhibitor is often equivocal across studies and unreliable. Determination of the K(i) requires the assignment of reversible inhibition mechanism but in vitro-to-in vivo prediction of DDI risk can be achieved for multiple inhibitors from estimates of the inhibitor affinity (IC(50)) only, regardless of the inhibition mechanism.
Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450 , Interacciones Farmacológicas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Inhibidores Enzimáticos/efectos adversos , Algoritmos , Animales , Antidepresivos de Segunda Generación/efectos adversos , Antidepresivos Tricíclicos/efectos adversos , Área Bajo la Curva , Sistema Enzimático del Citocromo P-450/química , Desipramina/efectos adversos , Fluoxetina/efectos adversos , Predicción , Humanos , Cinética , Modelos EstadísticosRESUMEN
Metabolites can have pharmacological or toxicological effects, inhibit metabolic enzymes, and be used as probes of drug-drug interactions or specific cytochrome P450 (P450) phenotypes. Thus, better understanding and prediction methods are needed to characterize metabolite exposures in vivo. This study aimed to test whether in vitro data could be used to predict and rationalize in vivo metabolite exposures using two model drugs and P450 probes: dextromethorphan and omeprazole with their primary metabolites dextrorphan, 5-hydroxyomeprazole (5OH-omeprazole), and omeprazole sulfone. Relative metabolite exposures were predicted using metabolite formation and elimination clearances. For dextrorphan, the formation clearances of dextrorphan glucuronide and 3-hydroxymorphinan from dextrorphan in human liver microsomes were used to predict metabolite (dextrorphan) clearance. For 5OH-omeprazole and omeprazole sulfone, the depletion rates of the metabolites in human hepatocytes were used to predict metabolite clearance. Dextrorphan/dextromethorphan in vivo metabolite/parent area under the plasma concentration versus time curve ratio (AUC(m)/AUC(p)) was overpredicted by 2.1-fold, whereas 5OH-omeprazole/omeprazole and omeprazole sulfone/omeprazole were predicted within 0.75- and 1.1-fold, respectively. The effect of inhibition or induction of the metabolite's formation and elimination on the AUC(m)/AUC(p) ratio was simulated. The simulations showed that unless metabolite clearance pathways are characterized, interpretation of the metabolic ratios is exceedingly difficult. This study shows that relative in vivo metabolite exposure can be predicted from in vitro data and characterization of secondary metabolism of probe metabolites is critical for interpretation of phenotypic data.
Asunto(s)
Dextrometorfano/química , Dextrometorfano/metabolismo , Microsomas Hepáticos/metabolismo , Omeprazol/química , Omeprazol/metabolismo , Humanos , Microsomas Hepáticos/enzimología , Valor Predictivo de las PruebasRESUMEN
All-trans-retinoic acid (atRA) is an important signaling molecule in all chordates. The cytochrome P450 enzymes CYP26 are believed to partially regulate cellular concentrations of atRA via oxidative metabolism and hence affect retinoid homeostasis and signaling. CYP26A1 and CYP26B1 are atRA hydroxylases that catalyze formation of similar metabolites in cell systems. However, they have only 40% sequence similarity suggesting differences between the two enzymes. The aim of this study was to determine whether CYP26A1 and CYP26B1 have similar catalytic activity, form different metabolites from atRA and are expressed in different tissues in adults. The mRNA expression of CYP26A1 and CYP26B1 correlated between human tissues except for human cerebellum in which CYP26B1 was the predominant CYP26 and liver in which CYP26A1 dominated. Quantification of CYP26A1 and CYP26B1 protein in human tissues was in agreement with the mRNA expression and showed correlation between the two isoforms. Qualitatively, recombinant CYP26A1 and CYP26B1 formed the same primary and sequential metabolites from atRA. Quantitatively, CYP26B1 had a lower K(m) (19nM) and V(max) (0.8 pmol/min/pmol) than CYP26A1 (K(m)=50 nM and V(max)=10 pmol/min/pmol) for formation of 4-OH-RA. The major atRA metabolites 4-OH-RA, 18-OH-RA and 4-oxo-RA were all substrates of CYP26A1 and CYP26B1, and CYP26A1 had a 2-10-fold higher catalytic activity towards all substrates tested. This study shows that CYP26A1 and CYP26B1 are qualitatively similar RA hydroxylases with overlapping expression profiles. CYP26A1 has higher catalytic activity than CYP26B1 and seems to be responsible for metabolism of atRA in tissues that function as a barrier for atRA exposure.
Asunto(s)
Sistema Enzimático del Citocromo P-450/biosíntesis , Regulación Enzimológica de la Expresión Génica , Tretinoina/metabolismo , Adulto , Anciano , Animales , Dominio Catalítico/genética , Línea Celular , Sistema Enzimático del Citocromo P-450/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oxigenasas de Función Mixta/metabolismo , Ratas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Ácido Retinoico 4-Hidroxilasa , Spodoptera/química , Spodoptera/genéticaRESUMEN
Itraconazole (ITZ) is a mixture of four cis-stereoisomers that inhibit CYP3A4 potently and coordinate CYP3A4 heme via the triazole nitrogen. However, (2R,4S,2'R)-ITZ and (2R,4S,2'S)-ITZ also undergo stereoselective sequential metabolism by CYP3A4 at a site distant from the triazole ring to 3'-OH-ITZ, keto-ITZ, and N-desalkyl-ITZ. This stereoselective metabolism demonstrates specific interactions of ITZ within the CYP3A4 active site. To further investigate this process, the binding and metabolism of the four trans-ITZ stereoisomers by CYP3A4 were characterized. All four trans-ITZ stereoisomers were tight binding inhibitors of CYP3A4-mediated midazolam hydroxylation (IC(50) 16-26 nM), and each gave a type II spectrum upon binding to CYP3A4. However, instead of formation of 3'-OH-ITZ, they were oxidized at the dioxolane ring, leading to ring scission and formation of two new metabolites of ITZ. These two metabolites were also formed from the four cis-ITZ stereoisomers, although not as efficiently. The catalytic rates of dioxolane ring scission were similar to the dissociation rates of ITZ stereoisomers from CYP3A4, suggesting that the heme iron is reduced while the triazole moiety coordinates to it and no dissociation of ITZ is necessary before catalysis. The triazole containing metabolite [1-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone] also inhibited CYP3A4 (IC(50) >15 µM) and showed type II binding with CYP3A4. The dioxolane ring scission appears to be clinically relevant because this metabolite was detected in urine samples from subjects that had been administered the mixture of cis-ITZ isomers. These data suggest that the dioxolane ring scission is a metabolic pathway for drugs that contain this moiety.