Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Prog Mol Biol Transl Sci ; 208: 161-183, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39266181

RESUMEN

Cell and gene therapy are innovative biomedical strategies aimed at addressing diseases at their genetic origins. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) systems have become a groundbreaking tool in cell and gene therapy, offering unprecedented precision and versatility in genome editing. This chapter explores the role of CRISPR in gene editing, tracing its historical development and discussing biomolecular formats such as plasmid, RNA, and protein-based approaches. Next, we discuss CRISPR delivery methods, including viral and non-viral vectors, followed by examining the various engineered CRISPR variants for their potential in gene therapy. Finally, we outline emerging clinical applications, highlighting the advancements in CRISPR for breakthrough medical treatments.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Terapia Genética , Sistemas CRISPR-Cas/genética , Humanos , Terapia Genética/métodos , Edición Génica/métodos , Animales , Tratamiento Basado en Trasplante de Células y Tejidos/métodos
2.
PLoS One ; 19(9): e0309438, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39240809

RESUMEN

Gliomas are highly malignant brain tumours that remain refractory to treatment. Treatment is typically surgical intervention followed by concomitant temozolomide and radiotherapy; however patient prognosis remains poor. Voltage gated ion channels have emerged as novel targets in cancer therapy and inhibition of a potassium selective subtype (hERG, Kv11.1) has demonstrated antitumour activity. Unfortunately blockade of hERG has been limited by cardiotoxicity, however hERG channel agonists have produced similar chemotherapeutic benefit without significant side effects. In this study, electrophysiological recordings suggest the presence of hERG channels in the anaplastic astrocytoma cell line SMA-560, and treatment with the hERG channel agonist NS1643, resulted in a significant reduction in the proliferation of SMA-560 cells. In addition, NS1643 treatment also resulted in a reduction of the secretion of matrix metalloproteinase-9 and SMA-560 cell migration. When combined with temozolomide, an additive impact was observed, suggesting that NS1643 may be a suitable adjuvant to temozolomide and limit the invasiveness of glioma.


Asunto(s)
Astrocitoma , Movimiento Celular , Proliferación Celular , Canales de Potasio Éter-A-Go-Go , Metaloproteinasa 9 de la Matriz , Temozolomida , Humanos , Línea Celular Tumoral , Astrocitoma/tratamiento farmacológico , Astrocitoma/patología , Astrocitoma/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Canales de Potasio Éter-A-Go-Go/metabolismo , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/genética , Temozolomida/farmacología , Metaloproteinasa 9 de la Matriz/metabolismo , Invasividad Neoplásica , Dacarbazina/análogos & derivados , Dacarbazina/farmacología , Canal de Potasio ERG1/metabolismo , Canal de Potasio ERG1/genética , Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Cresoles , Compuestos de Fenilurea
3.
Technol Cancer Res Treat ; 23: 15330338241273160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099463

RESUMEN

Introduction: The independent diagnostic value of inflammatory markers neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ratio (PLR) and the diagnostic efficacy of NLR, derived neutrophil to lymphocyte ratio (dNLR), PLR, and lymphocyte-to-monocyte ratio (LMR) in glioma cases remain unclear. We investigated the correlation of preoperative peripheral blood inflammatory markers with pathological grade, Ki-67 Proliferation Index, and IDH-1 gene phenotype in patients with glioma, focusing on tumor grade and prognosis. Methods: We retrospectively analyzed the clinical, pathological, and laboratory data of 334 patients with glioma with varying grades and 345 with World Health Organization (WHO I) meningioma who underwent initial surgery at the Affiliated Hospital of Jining Medical University from December 2019 to December 2021. The diagnostic value of peripheral blood inflammatory markers for glioma was investigated. Results: The proportion of men smoking and drinking was significantly higher in the glioma group than in the meningioma group (P < .05); in contrast, the age and body mass index (Kg/m2) were significantly lower in the glioma group (P = .01). Significant differences were noted in the pathological grade (WHO II, III, and IV), Ki-67 Proliferation Index, and peripheral blood inflammatory markers such as lymphocyte median, NLR, dNLR, and PLR between the groups (P < .05). No significant correlation existed between peripheral blood inflammatory factors and IDH-1 gene mutation status or tumor location in patients with glioma (P > .05). LMR, NLR, dNLR, and PLR, varied significantly among different glioma types (P < .05). White blood cell (WBC) count, neutrophil, NLR, and dNLR correlated positively with glioma risk. Further, WBC, neutrophil, NLR, dNLR, and LMR had a high diagnostic efficiency. Conclusion: Peripheral blood inflammatory markers, serving as noninvasive biomarkers, offer high sensitivity and specificity for diagnosing glioma, differentiating it from meningioma, diagnosing GBM, and distinguishing GBM from low-grade glioma. These markers may be implemented as routine screening tools.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , Glioma , Clasificación del Tumor , Neutrófilos , Humanos , Glioma/patología , Glioma/sangre , Glioma/cirugía , Glioma/diagnóstico , Masculino , Femenino , Pronóstico , Persona de Mediana Edad , Biomarcadores de Tumor/sangre , Neutrófilos/patología , Adulto , Estudios Retrospectivos , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/sangre , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/diagnóstico , Anciano , Linfocitos/patología , Periodo Preoperatorio , Inflamación/patología , Inflamación/sangre , Plaquetas/patología , Curva ROC
4.
Metabolites ; 14(8)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39195509

RESUMEN

Glioblastoma (IDH-wildtype) represents a formidable challenge in oncology, lacking effective chemotherapeutic or biological interventions. The metabolic reprogramming of cancer cells is a hallmark of tumor progression and drug resistance, yet the role of metabolic reprogramming in glioblastoma during drug treatment remains poorly understood. The dihydroorotate dehydrogenase (DHODH) inhibitor BAY2402234 is a blood-brain barrier penetrant drug showing efficiency in in vivo models of many brain cancers. In this study, we investigated the effect of BAY2402234 in regulating the metabolic phenotype of EGFRWT and EGFRvIII patient-derived glioblastoma cell lines. Our findings reveal the selective cytotoxicity of BAY2402234 toward EGFRWT glioblastoma subtypes with minimal effect on EGFRvIII patient cells. At sublethal doses, BAY2402234 induces triglyceride synthesis at the expense of membrane lipid synthesis and fatty acid oxidation in EGFRWT glioblastoma cells, while these effects are not observed in EGFRvIII glioblastoma cells. Furthermore, BAY2402234 reduced the abundance of signaling lipid species in EGFRWT glioblastoma. This study elucidates genetic mutation-specific metabolic plasticity and efficacy in glioblastoma cells in response to drug treatment, offering insights into therapeutic avenues for precision medicine approaches.

5.
Integr Cancer Ther ; 23: 15347354241243024, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708673

RESUMEN

Colorectal cancer (CRC) is the third leading cause of cancer-related death in the world. Multiple evidence suggests that there is an association between excess fat consumption and the risk of CRC. The long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential for human health, and both in vitro and in vivo studies have shown that these fatty acids can prevent CRC development through various molecular mechanisms. These include the modulation of arachidonic acid (AA) derived prostaglandin synthesis, alteration of growth signaling pathways, arrest of the cell cycle, induction of cell apoptosis, suppression of angiogenesis and modulation of inflammatory response. Human clinical studies found that LC n-3 PUFA combined with chemotherapeutic agents can improve the efficacy of treatment and reduce the dosage of chemotherapy and associated side effects. In this review, we discuss comprehensively the anti-cancer effects of LC n-3 PUFA on CRC, with a main focus on the underlying molecular mechanisms.


Asunto(s)
Neoplasias Colorrectales , Ácidos Grasos Omega-3 , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Ácido Eicosapentaenoico/farmacología , Ácido Eicosapentaenoico/administración & dosificación , Transducción de Señal/efectos de los fármacos , Ácidos Docosahexaenoicos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
6.
Brain Sci ; 14(1)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38248304

RESUMEN

Glioblastoma is highly proliferative and invasive. However, the regulatory cytokine networks that promote glioblastoma cell proliferation and invasion into other areas of the brain are not fully defined. In the present study, we define a critical role for the IL-11/IL-11Rα signalling axis in glioblastoma proliferation, epithelial to mesenchymal transition, and invasion. We identified enhanced IL-11/IL-11Rα expression correlated with reduced overall survival in glioblastoma patients using TCGA datasets. Proteomic analysis of glioblastoma cell lines overexpressing IL-11Rα displayed a proteome that favoured enhanced proliferation and invasion. These cells also displayed greater proliferation and migration, while the knockdown of IL-11Rα reversed these tumourigenic characteristics. In addition, these IL-11Rα overexpressing cells displayed enhanced invasion in transwell invasion assays and in 3D spheroid invasion assays, while knockdown of IL-11Rα resulted in reduced invasion. Furthermore, IL-11Rα-overexpressing cells displayed a more mesenchymal-like phenotype compared to parental cells and expressed greater levels of the mesenchymal marker Vimentin. Overall, our study identified that the IL-11/IL-11Rα pathway promotes glioblastoma cell proliferation, EMT, and invasion.

7.
Cells ; 13(2)2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38275817

RESUMEN

BACKGROUND: Glioblastoma is characterised by extensive infiltration into the brain parenchyma, leading to inevitable tumor recurrence and therapeutic failure. Future treatments will need to target the specific biology of tumour recurrence, but our current understanding of the underlying mechanisms is limited. Significantly, there is a lack of available methods and models that are tailored to the examination of tumour recurrence. METHODS: NOD-SCID mice were orthotopically implanted with luciferase-labelled donor U87MG or MU20 glioblastoma cells. Four days later, an unlabelled recipient tumor was implanted on the contralateral side. The mice were euthanised at a humane end-point and tissue and blood samples were collected for ex vivo analyses. RESULTS: The ex vivo analyses of the firefly-labelled MU20 tumours displayed extensive invasion at the primary tumour margins, whereas the firefly-labelled U87MG tumours exhibited expansive phenotypes with no evident invasions at the tumour margins. Luciferase signals were detected in the contralateral unlabelled recipient tumours for both the U87MG and MU20 tumours compared to the non-implanted control brain. Remarkably, tumour cells were uniformly detected in all tissue samples of the supratentorial brain region compared to the control tissue, with single tumour cells detected in some tissue samples. Circulating tumour cells were also detected in the blood samples of most of the xenografted mice. Moreover, tumour cells were detected in the lungs of all of the mice, a probable event related to haematogenous dissemination. Similar results were obtained when the U87MG cells were alternatively labelled with gaussian luciferase. CONCLUSIONS: These findings describe a systemic disease model for glioblastoma which can be used to investigate recurrence biology and therapeutic efficacy towards recurrence.


Asunto(s)
Glioblastoma , Ratones , Animales , Glioblastoma/patología , Recurrencia Local de Neoplasia , Ratones Endogámicos NOD , Ratones SCID , Modelos Animales de Enfermedad , Luciferasas
8.
Mol Immunol ; 166: 101-109, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38278031

RESUMEN

Transforming growth factor-ß (TGF-ß) is a pleiotropic cytokine essential for multiple biological processes, including the regulation of inflammatory and immune responses. One of the important functions of TGF-ß is the suppression of the proinflammatory cytokine interleukin-12 (IL-12), which is crucial for mounting an anti-tumorigenic response. Although the regulation of the IL-12p40 subunit (encoded by the IL-12B gene) of IL-12 has been extensively investigated, the knowledge of IL-12p35 (encoded by IL-12A gene) subunit regulation is relatively limited. This study investigates the molecular regulation of IL-12A by TGF-ß-activated signaling pathways in THP-1 monocytes. Our study identifies a complex regulation of IL-12A gene expression by TGF-ß, which involves multiple cellular signaling pathways, such as Smad2/3, NF-κB, p38 and JNK1/2. Pharmacological inhibition of NF-κB signaling decreased IL-12A expression, while blocking the Smad2/3 signaling pathway by overexpression of Smad7 and inhibiting JNK1/2 signaling with a pharmacological inhibitor, SP600125, increased its expression. The elucidated signaling pathways that regulate IL-12A gene expression potentially provide new therapeutic targets to increase IL-12 levels in the tumor microenvironment.


Asunto(s)
Subunidad p35 de la Interleucina-12 , Factor de Crecimiento Transformador beta , Citocinas , Expresión Génica , Interleucina-12 , Subunidad p35 de la Interleucina-12/metabolismo , Monocitos/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Humanos
9.
Cells ; 12(23)2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38067168

RESUMEN

Epithelial-mesenchymal transition (EMT) is crucial to metastasis by increasing cancer cell migration and invasion. At the cellular level, EMT-related morphological and functional changes are well established. At the molecular level, critical signaling pathways able to drive EMT have been described. Yet, the translation of EMT into efficient diagnostic methods and anti-metastatic therapies is still missing. This highlights a gap in our understanding of the precise mechanisms governing EMT. Here, we discuss evidence suggesting that overcoming this limitation requires the integration of multiple omics, a hitherto neglected strategy in the EMT field. More specifically, this work summarizes results that were independently obtained through epigenomics/transcriptomics while comprehensively reviewing the achievements of proteomics in cancer research. Additionally, we prospect gains to be obtained by applying spatio-temporal multiomics in the investigation of EMT-driven metastasis. Along with the development of more sensitive technologies, the integration of currently available omics, and a look at dynamic alterations that regulate EMT at the subcellular level will lead to a deeper understanding of this process. Further, considering the significance of EMT to cancer progression, this integrative strategy may enable the development of new and improved biomarkers and therapeutics capable of increasing the survival and quality of life of cancer patients.


Asunto(s)
Multiómica , Neoplasias , Humanos , Calidad de Vida , Neoplasias/genética , Transición Epitelial-Mesenquimal/genética , Análisis Espacio-Temporal
10.
Growth Factors ; 41(2): 82-100, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37229558

RESUMEN

Transforming growth factor ß (TGFß) is a multifunctional cytokine, and its signalling responses are exerted via integrated intracellular pathways and complex regulatory mechanisms. Due to its high potency, TGFß signalling is tightly controlled under normal circumstances, while its dysregulation in cancer favours metastasis. The recognised potential of TGFß as a therapeutic target led to emerging development of anti-TGFß reagents with preclinical success, yet these therapeutics failed to recapitulate their efficacy in experimental settings. In this review, possible reasons for this inconsistency are discussed, addressing the knowledge gap between theoretical and actual behaviours of TGFß signalling. Previous studies on oncogenic cells have demonstrated the spatiotemporal heterogeneity of TGFß signalling intensity. Under feedback mechanisms and exosomal ligand recycling, cancer cells may achieve cyclic TGFß signalling to facilitate dissemination and colonisation. This challenges the current presumption of persistently high TGFß signalling in cancer, pointing to a new direction of research on TGFß-targeted therapeutics.


Asunto(s)
Neoplasias , Factor de Crecimiento Transformador beta , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal , Neoplasias/tratamiento farmacológico
11.
Sci Rep ; 13(1): 5202, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997576

RESUMEN

Macrophages are heterogeneous innate immune cells that are functionally shaped by their surrounding microenvironment. Diverse macrophage populations have multifaceted differences related to their morphology, metabolism, expressed markers, and functions, where the identification of the different phenotypes is of an utmost importance in modelling immune response. While expressed markers are the most used signature to classify phenotypes, multiple reports indicate that macrophage morphology and autofluorescence are also valuable clues that can be used in the identification process. In this work, we investigated macrophage autofluorescence as a distinct feature for classifying six different macrophage phenotypes, namely: M0, M1, M2a, M2b, M2c, and M2d. The identification was based on extracted signals from multi-channel/multi-wavelength flow cytometer. To achieve the identification, we constructed a dataset containing 152,438 cell events each having a response vector of 45 optical signals fingerprint. Based on this dataset, we applied different supervised machine learning methods to detect phenotype specific fingerprint from the response vector, where the fully connected neural network architecture provided the highest classification accuracy of 75.8% for the six phenotypes compared simultaneously. Furthermore, by restricting the number of phenotypes in the experiment, the proposed framework produces higher classification accuracies, averaging 92.0%, 91.9%, 84.2%, and 80.4% for a pool of two, three, four, five phenotypes, respectively. These results indicate the potential of the intrinsic autofluorescence for classifying macrophage phenotypes, with the proposed method being quick, simple, and cost-effective way to accelerate the discovery of macrophage phenotypical diversity.


Asunto(s)
Aprendizaje Automático , Macrófagos , Macrófagos/metabolismo , Fenotipo
12.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36834778

RESUMEN

Glioblastoma cells adapt to changes in glucose availability through metabolic plasticity allowing for cell survival and continued progression in low-glucose concentrations. However, the regulatory cytokine networks that govern the ability to survive in glucose-starved conditions are not fully defined. In the present study, we define a critical role for the IL-11/IL-11Rα signalling axis in glioblastoma survival, proliferation and invasion when cells are starved of glucose. We identified enhanced IL-11/IL-11Rα expression correlated with reduced overall survival in glioblastoma patients. Glioblastoma cell lines over-expressing IL-11Rα displayed greater survival, proliferation, migration and invasion in glucose-free conditions compared to their low-IL-11Rα-expressing counterparts, while knockdown of IL-11Rα reversed these pro-tumorigenic characteristics. In addition, these IL-11Rα-over-expressing cells displayed enhanced glutamine oxidation and glutamate production compared to their low-IL-11Rα-expressing counterparts, while knockdown of IL-11Rα or the pharmacological inhibition of several members of the glutaminolysis pathway resulted in reduced survival (enhanced apoptosis) and reduced migration and invasion. Furthermore, IL-11Rα expression in glioblastoma patient samples correlated with enhanced gene expression of the glutaminolysis pathway genes GLUD1, GSS and c-Myc. Overall, our study identified that the IL-11/IL-11Rα pathway promotes glioblastoma cell survival and enhances cell migration and invasion in environments of glucose starvation via glutaminolysis.


Asunto(s)
Glioblastoma , Humanos , Línea Celular , Línea Celular Tumoral , Glioblastoma/metabolismo , Glucosa/metabolismo , Interleucina-11/metabolismo , Receptores de Interleucina-11
13.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35269915

RESUMEN

Glioblastoma is the most aggressive brain tumour with short survival, partly due to resistance to conventional therapy. Glioma stem cells (GSC) are likely to be involved in treatment resistance, by releasing extracellular vesicles (EVs) containing specific molecular cargoes. Here, we studied the EVs secreted by glioma stem cells (GSC-EVs) and their effects on radiation resistance and glioma progression. EVs were isolated from 3 GSCs by serial centrifugation. NanoSight measurement, cryo-electron microscopy and live imaging were used to study the EVs size, morphology and uptake, respectively. The non-GSC glioma cell lines LN229 and U118 were utilised as a recipient cell model. Wound healing assays were performed to detect cell migration. Colony formation, cell viability and invadopodium assays were conducted to detect cell survival of irradiated recipient cells and cell invasion post GSC-EV treatment. NanoString miRNA global profiling was used to select for the GSC-EVs' specific miRNAs. All three GSC cell lines secreted different amounts of EVs, and all expressed consistent levels of CD9 but different level of Alix, TSG101 and CD81. EVs were taken up by both LN229 and U118 recipient cells. In the presence of GSC-EVs, these recipient cells survived radiation exposure and initiated colony formation. After GSC-EVs exposure, LN229 and U118 cells exhibited an invasive phenotype, as indicated by an increase in cell migration. We also identified 25 highly expressed miRNAs in the GSC-EVs examined, and 8 of these miRNAs can target PTEN. It is likely that GSC-EVs and their specific miRNAs induced the phenotypic changes in the recipient cells due to the activation of the PTEN/Akt pathway. This study demonstrated that GSC-EVs have the potential to induce radiation resistance and modulate the tumour microenvironment to promote glioma progression. Future therapeutic studies should be designed to interfere with these GSC-EVs and their specific miRNAs.


Asunto(s)
Vesículas Extracelulares , Glioma , MicroARNs , Microscopía por Crioelectrón , Vesículas Extracelulares/metabolismo , Glioma/genética , Glioma/metabolismo , Glioma/radioterapia , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Neoplásicas/metabolismo , Microambiente Tumoral
14.
Nutr Metab (Lond) ; 19(1): 12, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35236377

RESUMEN

BACKGROUND: Our in vitro studies demonstrated that krill oil (KO) has anti-cancer potential. This study aimed to compare the anti-cancer effects of KO with a commonly used chemotherapeutic drug, oxaliplatin and to identify the molecular mechanisms associated with KO supplementation in a mouse model of colorectal cancer (CRC). METHODS: Thirty-six male Balb/c mice were randomly divided into six groups. Five groups received standard chow diet supplemented with KO (150 g/kg)), corn oil (150 g/kg), KO combined with ½ dose of oxaliplatin (1.5 mg/kg body weight/3 times per week), corn oil combined with ½ dose of oxaliplatin (1.5 mg/kg body weight/3 times per week), or a full dose of oxaliplatin (3 mg/kg body weight/3 times per week). The control (sham) group received a standard chow diet. Treatments started three weeks before and continued for three weeks after orthotopic CRC induction. The number of metastases, tumour weight and volume were quantified ex-vivo. The expression of cytochrome c, cleaved caspase-9 and -3, DNA damage, PD-L1, PD-L2 and HSP-70 were determined. RESULTS: A significant reductions in the weight and volume of tumours were observed in mice treated with KO and KO plus a ½ dose of oxaliplatin compared to the sham group, similar to oxaliplatin-treated mice. KO, and KO plus ½ dose of oxaliplatin significantly increased the expression of cytochrome c, cleaved caspase-9 and -3, and DNA damage and decreased expression of PD-L1, PD-L2 and HSP-70 in tumour tissues compared to the sham group. CONCLUSIONS: The in vivo anti-cancer effects of KO are comparable with oxaliplatin. Thus, dietary KO supplementation has a great potential as a therapeutic/adjunctive agent for CRC treatment.

15.
BMC Complement Med Ther ; 22(1): 34, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35120511

RESUMEN

BACKGROUND: We have previously reported that the free fatty acid extract (FFAE) of krill oil (KO) significantly inhibits the proliferation and migration, and induces apoptosis of colorectal cancer (CRC) cells. This study aimed to investigate the in vivo efficacy of various doses of KO supplementation on the inhibition of CRC tumour growth, molecular markers of proliferation, angiogenesis, apoptosis, the epidermal growth factor receptor (EGFR) and its downstream molecular signalling. METHODS: Male Balb/c mice were randomly divided into four groups with five in each group. The control (untreated) group received standard chow diet; and other three groups received KO supplementation at 5%, 10%, and 15% of their daily dietary intake respectively for three weeks before and after the orthotopic implantation of CT-26 CRC cells in their caecum. The expression of cell proliferation marker Ki-67 and angiogenesis marker CD-31 were assessed by immunohistochemistry. The expression of EGFR, phosphorylated EGFR (pEGFR), protein kinase B (AKT), pAKT, extracellular signal-regulated kinase (ERK1/2), pERK1/2, cleaved caspase-7, cleaved poly (ADP-ribose) polymerase (PARP), and DNA/RNA damage were determined by western blot. RESULTS: KO supplementation reduced the CRC tumour growth in a dose-dependent manner; with 15% of KO being the most effective in reduction of tumour weight and volume (68.5% and 68.3% respectively, P < 0.001), inhibition of cell proliferation by 69.9% (P < 0.001) and microvessel density by 72.7% (P < 0.001). The suppressive effects of KO on EGFR and its downstream signalling, ERK1/2 and AKT, were consistent with our previous in vitro observations. Furthermore, KO exhibited pro-apoptotic effects on tumour cells as indicated by an increase in the expression of cleaved PARP by 3.9-fold and caspase-7 by 8.9-fold. CONCLUSIONS: This study has demonstrated that KO supplementation reduces CRC tumour growth by inhibiting cancer cell proliferation and blood vessel formation and inducing apoptosis of tumour cells. These anti-cancer effects are associated with the downregulation of the EGFR signalling pathway and activation of caspase-7, PARP cleavage, and DNA/RNA damage.


Asunto(s)
Neoplasias Colorrectales , Euphausiacea , Animales , Suplementos Dietéticos , Masculino , Ratones , Ratones Endogámicos BALB C , Tomografía Computarizada por Rayos X
16.
Biophys J ; 121(4): 596-606, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35031276

RESUMEN

Adherens junctions physically link two cells at their contact interface via extracellular binding between cadherin molecules and intracellular interactions between cadherins and the actin cytoskeleton. Cadherin and actomyosin cytoskeletal dynamics are regulated reciprocally by mechanical and chemical signals, which subsequently determine the strength of cell-cell adhesions and the emergent organization and stiffness of the tissues they form. However, an understanding of the integrated system is lacking. We present a new mechanistic computational model of intercellular junction maturation in a cell doublet to investigate the mechanochemical cross talk that regulates adherens junction formation and homeostasis. The model couples a two-dimensional lattice-based simulation of cadherin dynamics with a reaction-diffusion representation of the reorganising actomyosin network through its regulation by Rho signalling at the intracellular junction. We demonstrate that local immobilization of cadherin induces cluster formation in a cis-less-dependent manner. We then recapitulate the process of cell-cell contact formation. Our model suggests that cortical tension applied on the contact rim can explain the ring distribution of cadherin and actin filaments (F-actin) on the cell-cell contact of the cell doublet. Furthermore, we propose and test the hypothesis that cadherin and F-actin interact like a positive feedback loop, which is necessary for formation of the ring structure. Different patterns of cadherin distribution were observed as an emergent property of disturbances of this positive feedback loop. We discuss these findings in light of available experimental observations on underlying mechanisms related to cadherin/F-actin binding and the mechanical environment.


Asunto(s)
Actinas , Cadherinas , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Cadherinas/metabolismo , Adhesión Celular/fisiología , Retroalimentación
17.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36614038

RESUMEN

Tumor cells have evolved to express immunosuppressive molecules allowing their evasion from the host's immune system. These molecules include programmed death ligands 1 and 2 (PD-L1 and PD-L2). Cancer cells can also produce acetylcholine (ACh), which plays a role in tumor development. Moreover, tumor innervation can stimulate vascularization leading to tumor growth and metastasis. The effects of atropine and muscarinic receptor 3 (M3R) blocker, 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP), on cancer growth and spread were evaluated in vitro using murine colon cancer cell line, CT-26, and in vivo in an orthotopic mouse model of colorectal cancer. In the in vitro model, atropine and 4-DAMP significantly inhibited CT-26 cell proliferation in a dose dependent manner and induced apoptosis. Atropine attenuated immunosuppressive markers and M3R via inhibition of EGFR/AKT/ERK signaling pathways. However, 4-DAMP showed no effect on the expression of PD-L1, PD-L2, and choline acetyltransferase (ChAT) on CT-26 cells but attenuated M3R by suppressing the phosphorylation of AKT and ERK. Blocking of M3R in vivo decreased tumor growth and expression of immunosuppressive, cholinergic, and angiogenic markers through inhibition of AKT and ERK, leading to an improved immune response against cancer. The expression of immunosuppressive and cholinergic markers may hold potential in determining prognosis and treatment regimens for colorectal cancer patients. This study's results demonstrate that blocking M3R has pronounced antitumor effects via several mechanisms, including inhibition of immunosuppressive molecules, enhancement of antitumor immune response, and suppression of tumor angiogenesis via suppression of the AKT/ERK signaling pathway. These findings suggest a crosstalk between the cholinergic and immune systems during cancer development. In addition, the cholinergic system influences cancer evasion from the host's immunity.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Pulmonares , Animales , Ratones , Antígeno B7-H1 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Muscarínico M3/metabolismo , Colinérgicos/uso terapéutico , Neoplasias Pulmonares/metabolismo , Receptores Muscarínicos , Atropina , Neoplasias Colorrectales/tratamiento farmacológico
18.
Int J Antimicrob Agents ; 58(6): 106460, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34695564

RESUMEN

L-sulforaphane (LSF) is an isothiocyanate derived from cruciferous vegetables that has long been known for its anticarcinogenic, antioxidant and anti-inflammatory effects. LSF also possesses antimicrobial properties, although the evidence for this is limited. Respiratory pathogens, such as Streptococcus pneumoniae, Haemophilus influenzae, Streptococcus pyogenes and respiratory syncytial virus (RSV), are leading global causes of illness and death among children aged under five years, particularly in resource-poor countries where access to vaccines are limited or, in the case of S. pyogenes and RSV, vaccines have not been licensed for use in humans. Therefore, alternative strategies to prevent and/or treat these common infectious diseases are urgently needed. This study was conducted to investigate the antimicrobial effects of LSF against common respiratory pathogens, S. pneumoniae (serotypes 1 and 6B), H. influenzae type B (HiB), non-typeable H. influenzae (NTHi), S. pyogenes and RSV in relevant human cell-based models. LSF significantly inhibited the growth of H. influenzae, but not S. pneumoniae or S. pyogenes. LSF did not improve opsonophagocytic capacity or killing by human phagocytic cell lines (HL-60s and THP-1 macrophages) for S. pneumoniae yet showed some improved killing for H. influenzae species in THP-1 macrophages. However, LSF significantly reduced RSV infection in human lung epithelial cells, associated with increased expression of cyclin D1 (CCND1) gene as well as the antioxidant genes, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HMOX-1). Overall, LSF represents an exciting avenue for further antimicrobial research, particularly as a novel therapy against H. influenzae species and RSV.


Asunto(s)
Antibacterianos/farmacología , Infecciones por Haemophilus/tratamiento farmacológico , Isotiocianatos/farmacología , Infecciones Neumocócicas/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Sulfóxidos/farmacología , Línea Celular , Ciclina D1/metabolismo , Células HL-60 , Haemophilus influenzae/efectos de los fármacos , Haemophilus influenzae/crecimiento & desarrollo , Hemo-Oxigenasa 1/metabolismo , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Pruebas de Sensibilidad Microbiana , Factor 2 Relacionado con NF-E2/metabolismo , Opsonización/efectos de los fármacos , Virus Sincitiales Respiratorios/efectos de los fármacos , Infecciones del Sistema Respiratorio/microbiología , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/crecimiento & desarrollo , Streptococcus pyogenes/efectos de los fármacos , Streptococcus pyogenes/crecimiento & desarrollo , Células THP-1 , Verduras/química
19.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34281166

RESUMEN

Cetuximab is a common treatment option for patients with wild-type K-Ras colorectal carcinoma. However, patients often display intrinsic resistance or acquire resistance to cetuximab following treatment. Here we generate two human CRC cells with acquired resistance to cetuximab that are derived from cetuximab-sensitive parental cell lines. These cetuximab-resistant cells display greater in vitro proliferation, colony formation and migration, and in vivo tumour growth compared with their parental counterparts. To evaluate potential alternative therapeutics to cetuximab-acquired-resistant cells, we tested the efficacy of 38 current FDA-approved agents against our cetuximab-acquired-resistant clones. We identified carfilzomib, a selective proteosome inhibitor to be most effective against our cell lines. Carfilzomib displayed potent antiproliferative effects, induced the unfolded protein response as determined by enhanced CHOP expression and ATF6 activity, and enhanced apoptosis as determined by enhanced caspase-3/7 activity. Overall, our results indicate a potentially novel indication for carfilzomib: that of a potential alternative agent to treat cetuximab-resistant colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Oligopéptidos/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cetuximab/farmacología , Neoplasias Colorrectales/fisiopatología , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Oligopéptidos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Respuesta de Proteína Desplegada/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Metallomics ; 13(7)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34165566

RESUMEN

Increasingly explored over the last decade, gold complexes have shown great promise in the field of cancer therapeutics. A major obstacle to their clinical progression has been their lack of in vivo stability, particularly for gold(III) complexes, which often undergo a facile reduction in the presence of biomolecules such as glutathione. Herein, we report a new class of promising anticancer gold(I)-gold(III) complexes with the general formula [XAuI(µ-2-C6F4PPh2)(κ2-2-C6F4PPh2)AuIIIX] [X = Cl (1), Br (2), NO3 (3)] which feature two gold atoms in different oxidation states (I and III) in a single molecule. Interestingly, gold(I)-gold(III) complexes (1-3) are stable against glutathione reduction under physiological-like conditions. In addition, complexes 1-3 exhibit significant cytotoxicity (276-fold greater than cisplatin) toward the tested cancer cells compared to the noncancerous cells. Moreover, the gold(I)-gold(III) complexes do not interact with DNA-like cisplatin but target cellular thioredoxin reductase, an enzyme linked to the development of cisplatin drug resistance. Complexes 1-3 also showed potential to inhibit cancer and endothelial cell migration, as well as tube formation during angiogenesis. In vivo studies in a murine HeLa xenograft model further showed the gold compounds may inhibit tumor growth on par clinically used cisplatin, supporting the significant potential this new compound class has for further development as cancer therapeutic.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Oro/química , Especies Reactivas de Oxígeno/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Animales , Antineoplásicos/química , Apoptosis , Ciclo Celular , Proliferación Celular , Cisplatino/farmacología , Complejos de Coordinación/química , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células Tumorales Cultivadas , Neoplasias del Cuello Uterino/patología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...