Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Pharm Biopharm ; 204: 114531, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39414093

RESUMEN

Cyclophosphamide (CPA) (2-oxo-2-di(ß-chloroethyl)amino tetrahydro-2,1,3-phosphoxazine) is an alkylating cytostatic compound with a broad spectrum of antitumor activity. Despite its efficacy, the clinical application of CPA is hindered by the significant occurrence of adverse side effects. To address these limitations, a promising approach involves the mechanochemical treatment of CPA with arabinogalactan (AG) to facilitate the dispersion of the drug within the AG matrix. AG stands out from other polymers due to its uniformity, low molecular weight, water solubility, and ability to form drug conjugates, thereby enhancing their therapeutic potency. Moreover, AG possesses immune-modulating properties that have the potential to counteract the immunosuppressive effects induced by CPA. By means of mechanical treatment, we successfully obtained CPA-AG complexes with a CPA:AG ratio of 1:10. These complexes were further modified with As42 aptamers that specifically target Erlich ascites cells. Aptamers, a novel class of oligonucleotide ligands obtained through SELEX technology, possess high affinity and specificity for binding to various receptors. An ascitic form of Ehrlich carcinoma was chosen as an in vitro and in vivo tumor model due to its notable drug resistance. In vitro and in vivo evaluations were conducted to compare the antitumor activity of both the CPA-AG and CPA-AG-As42 complexes with pure CPA. In vitro experiments revealed that the CPA-AG complex displayed superior antitumor activity compared to pure CPA, leading to complete tumor cell death primarily through necrosis. Notably, no toxic effects were observed with the CPA-AG and CPA-AG-As42 complexes, and they significantly prolonged the lifespan of tumor-bearing mice by more than 3.5 times. Histological studies further supported the antitumor efficacy of these complexes. These results underscore the potential of utilizing CPA-AG mechanocomposites, functionalized with aptamers, for the targeted delivery of CPA to tumors.


Asunto(s)
Aptámeros de Nucleótidos , Ciclofosfamida , Galactanos , Animales , Ratones , Ciclofosfamida/farmacología , Aptámeros de Nucleótidos/farmacología , Aptámeros de Nucleótidos/química , Galactanos/química , Galactanos/farmacología , Carcinoma de Ehrlich/tratamiento farmacológico , Carcinoma de Ehrlich/patología , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/administración & dosificación , Línea Celular Tumoral , Femenino , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación
2.
J Am Chem Soc ; 146(36): 24989-25004, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39186481

RESUMEN

Gliomas remain challenging brain tumors to treat due to their infiltrative nature. Accurately identifying tumor boundaries during surgery is crucial for successful resection. This study introduces an innovative intraoperative visualization method utilizing surgical fluorescence microscopy to precisely locate tumor cell dissemination. Here, the focus is on the development of a novel contrasting agent (IR-Glint) for intraoperative visualization of human glial tumors comprising infrared-labeled Glint aptamers. The specificity of IR-Glint is assessed using flow cytometry and microscopy on primary cell cultures. In vivo effectiveness is studied on mouse and rabbit models, employing orthotopic xenotransplantation of human brain gliomas with various imaging techniques, including PET/CT, in vivo fluorescence visualization, confocal laser scanning, and surgical microscopy. The experiments validate the potential of IR-Glint for the intraoperative visualization of gliomas using infrared imaging. IR-Glint penetrates the blood-brain barrier and can be used for both intravenous and surface applications, allowing clear visualization of the tumor. The surface application directly to the brain reduces the dosage required and mitigates potential toxic effects on the patient. The research shows the potential of infrared dye-labeled aptamers for accurately visualizing glial tumors during brain surgery. This novel aptamer-assisted fluorescence-guided surgery (AptaFGS) may pave the way for future advancements in the field of neurosurgery.


Asunto(s)
Aptámeros de Nucleótidos , Neoplasias Encefálicas , Cirugía Asistida por Computador , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Animales , Humanos , Ratones , Aptámeros de Nucleótidos/química , Cirugía Asistida por Computador/métodos , Conejos , Glioma/diagnóstico por imagen , Glioma/cirugía , Glioma/patología , Colorantes Fluorescentes/química , Rayos Infrarrojos , Imagen Óptica , Línea Celular Tumoral
3.
J Funct Biomater ; 14(4)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37103269

RESUMEN

One of the promising novel methods for radical tumor resection at a single-cell level is magneto-mechanical microsurgery (MMM) with magnetic nano- or microdisks modified with cancer-recognizing molecules. A low-frequency alternating magnetic field (AMF) remotely drives and controls the procedure. Here, we present characterization and application of magnetic nanodisks (MNDs) as a surgical instrument ("smart nanoscalpel") at a single-cell level. MNDs with a quasi-dipole three-layer structure (Au/Ni/Au) and DNA aptamer AS42 (AS42-MNDs) on the surface converted magnetic moment into mechanical and destroyed tumor cells. The effectiveness of MMM was analyzed on Ehrlich ascites carcinoma (EAC) cells in vitro and in vivo using sine and square-shaped AMF with frequencies from 1 to 50 Hz with 0.1 to 1 duty-cycle parameters. MMM with the "Nanoscalpel" in a sine-shaped 20 Hz AMF, a rectangular-shaped 10 Hz AMF, and a 0.5 duty cycle was the most effective. A sine-shaped field caused apoptosis, whereas a rectangular-shaped field caused necrosis. Four sessions of MMM with AS42-MNDs significantly reduced the number of cells in the tumor. In contrast, ascites tumors continued to grow in groups of mice and mice treated with MNDs with nonspecific oligonucleotide NO-MND. Thus, applying a "smart nanoscalpel" is practical for the microsurgery of malignant neoplasms.

4.
Mol Ther Nucleic Acids ; 32: 267-288, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37090419

RESUMEN

Here, we present DNA aptamers capable of specific binding to glial tumor cells in vitro, ex vivo, and in vivo for visualization diagnostics of central nervous system tumors. We selected the aptamers binding specifically to the postoperative human glial primary tumors and not to the healthy brain cells and meningioma, using a modified process of systematic evolution of ligands by exponential enrichment to cells; sequenced and analyzed ssDNA pools using bioinformatic tools and identified the best aptamers by their binding abilities; determined three-dimensional structures of lead aptamers (Gli-55 and Gli-233) with small-angle X-ray scattering and molecular modeling; isolated and identified molecular target proteins of the aptamers by mass spectrometry; the potential binding sites of Gli-233 to the target protein and the role of post-translational modifications were verified by molecular dynamics simulations. The anti-glioma aptamers Gli-233 and Gli-55 were used to detect circulating tumor cells in liquid biopsies. These aptamers were used for in situ, ex vivo tissue staining, histopathological analyses, and fluorescence-guided tumor and PET/CT tumor visualization in mice with xenotransplanted human astrocytoma. The aptamers did not show in vivo toxicity in the preclinical animal study. This study demonstrates the potential applications of aptamers for precise diagnostics and fluorescence-guided surgery of brain tumors.

5.
Molecules ; 27(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36500686

RESUMEN

The hemostasis system is a complex structure that includes the fibrinolysis system, and Yes this is correct coagulation and anticoagulation parts. Due to the multicomponent nature, it becomes relevant to study the key changes in the functioning of signaling pathways, and develop new diagnostic methods and modern drugs with high selectivity. One of the ways to solve this problem is the development of molecular recognition elements capable of blocking one of the hemostasis systems and/or activating another. Aptamers can serve as ligands for targeting specific clinical needs, promising anticoagulants with minor side effects and significant biological activity. Aptamers with several clotting factors and platelet proteins are used for the treatment of thrombosis. This review is focused on the aptamers used for the correction of the hemostasis system, and their structural and functional features. G-rich nucleic acid aptamers, mostly versatile G-quadruplexes, recognize different components of the hemostasis system and are capable of correcting the functioning.


Asunto(s)
Aptámeros de Nucleótidos , G-Cuádruplex , Aptámeros de Nucleótidos/farmacología , Aptámeros de Nucleótidos/uso terapéutico , Aptámeros de Nucleótidos/química , Hemostasis , Coagulación Sanguínea , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Anticoagulantes/química , Plaquetas
6.
Nucleic Acid Ther ; 32(6): 497-506, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35921069

RESUMEN

Cisplatin is an effective drug for treating various cancer types. However, it is highly toxic for both healthy and tumor cells. Therefore, there is a need to reduce its therapeutic dose and increase targeted bioavailability. One of the ways to achieve this could be the coating of cisplatin with polysaccharides and specific carriers for targeted delivery. Nucleic acid aptamers could be used as carriers for the specific delivery of medicine to cancer cells. Cisplatin-arabinogalactan-aptamer (Cis-AG-Ap) conjugate was synthesized based on Cis-dichlorodiammineplatinum, Siberian larch arabinogalactan, and aptamer AS-42 specific to heat-shock proteins (HSP) 71 kDa (Hspa8) and HSP 90-beta (Hsp90ab1). The antitumor effect was estimated using ascites and metastatic Ehrlich tumor models. Cis-AG-Ap toxicity was assessed by blood biochemistry on healthy mice. Here, we demonstrated enhanced anticancer activity of Cis-AG-Ap and its specific accumulation in tumor foci. It was shown that targeted delivery allowed a 15-fold reduction in the therapeutic dose of cisplatin and its toxicity. Cis-AG-Ap sufficiently suppressed the growth of Ehrlich's ascites carcinoma, the mass and extent of tumor metastasis in vivo. Arabinogalactan and the aptamers promoted cisplatin efficiency by enhancing its bioavailability. The described strategy could be very promising for targeted anticancer therapy.


Asunto(s)
Ácidos Nucleicos , Animales , Ratones , Cisplatino/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...