Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 257: 116295, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38653013

RESUMEN

Hyperbolic metamaterial (HMM) biosensors based on metals have superior performance in comparison with conventional plasmonic biosensors in the detection of low concentrations of molecules. In this study, a nanorod HMM (NHMM) biosensor based on refractive index changes for carcinoembryonic antigen (CEA) detection is developed using secondary antibody modified gold nanoparticle (AuNP-Ab2) nanocomposites as signal amplification element for the first time. Numerical analysis based on finite element method is conducted to simulate the perturbation of the electric field of bulk plasmon polariton (BPP) supported by a NHMM in the presence of a AuNP. The simulation reveals an enhancement of the localized electric field, which arises from the resonant coupling of BPP to the localized surface plasmon resonance supported by AuNPs and is beneficial for the detection of changes of the refractive index. Furthermore, the AuNP-Ab2 nanocomposites-based NHMM (AuNP/Ab2-NHMM) biosensor enables CEA detection in the visible and near-infrared regions simultaneously. The highly sensitive detection of CEA with a wide linear range of 1-500 ng/mL is achieved in the near-infrared region. The detectable concentration of the AuNP/Ab2-NHMM biosensor has a 50-fold decrease in comparison with a NHMM biosensor. A low detection limit of 0.25 ng/mL (1.25 pM) is estimated when considering a noise level of 0.05 nm as the minimum detectable wavelength shift. The proposed method achieves high sensitivity and good reproducibility for CEA detection, which makes it a novel and viable approach for biomedical research and early clinical diagnostics.


Asunto(s)
Técnicas Biosensibles , Antígeno Carcinoembrionario , Oro , Límite de Detección , Nanopartículas del Metal , Nanotubos , Resonancia por Plasmón de Superficie , Oro/química , Antígeno Carcinoembrionario/sangre , Antígeno Carcinoembrionario/análisis , Nanopartículas del Metal/química , Nanotubos/química , Humanos , Resonancia por Plasmón de Superficie/métodos , Técnicas Biosensibles/métodos , Anticuerpos Inmovilizados/química
2.
J Phys Chem Lett ; 15(8): 2247-2254, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38380862

RESUMEN

With the increasing emphasis on atmospheric environmental protection, it is crucial to find an efficient, direct, and accurate method to identify pollutant species in the atmosphere. To solve this problem, we designed and prepared the cascade multicavity (CMC) structure composed with silver nanoparticles (Ag NPs) as a surface-enhanced Raman scattering (SERS) substrate with favorable light transmittance and flexibility. The multicavity structure distributed on the surface introducing the homogeneous connecting holes endows the structure to more fully utilize the incident light while slowing the gas movement rate. Theoretical and experimental results have demonstrated that the Ag NPs/cascade multicavity (Ag-CMC) SERS substrate is a highly sensitive SERS substrate that can be used for in situ detection of gases under non-perpendicularly incident laser irradiation or bending of the substrate. We believe that the SERS substrate can provide a more efficient and feasible way for in situ detection of gaseous pollutants.

3.
Opt Express ; 31(4): 5297-5313, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36823814

RESUMEN

The accurate detection of nanoplastics is crucial due to their harmful effects on the environment and human beings. However, there is a lack of detection methods for nanoplastics smaller than 50 nm. In this research, we successfully constructed an Ag/CuO nanowire (NW)/BaTiO3@Polyvinylidene fluoride (PVDF) Bowl-shaped substrate with a nanowire-in-Bowl-shaped piezoelectric cavity structure that can modulate surface-enhanced Raman scattering (SERS) by the piezoelectric effect by the virtue of the tip effect of the CuO NW and light focusing effect of the Bowl-shaped cavity. Due to its unique nanowire-in-Bowl-shaped structure and piezoelectrically modifiable ability, nanoplastics less than 50 nm were successfully detected and quantitatively analyzed. We believe that the Ag/CuO NW/BaTiO3@PVDF Bowl-shaped substrate can provide an efficient, accurate, and feasible way to achieve qualitative and quantitative detection of nanoplastics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA