Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Natl Sci Rev ; 11(4): nwae018, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38440217

RESUMEN

The limited infiltration and persistence of chimeric antigen receptor (CAR)-T cells is primarily responsible for their treatment deficits in solid tumors. Here, we present a three-dimensional scaffold, inspired by the physiological process of T-cell proliferation in lymph nodes. This scaffold gathers the function of loading, delivery, activation and expansion for CAR-T cells to enhance their therapeutic effects on solid tumors. This porous device is made from poly(lactic-co-glycolic acid) by a microfluidic technique with the modification of T-cell stimulatory signals, including anti-CD3, anti-CD28 antibodies, as well as cytokines. This scaffold fosters a 50-fold CAR-T cell expansion in vitro and a 15-fold cell expansion in vivo. Particularly, it maintains long-lasting expansion of CAR-T cells for up to 30 days in a cervical tumor model and significantly inhibits the tumor growth. This biomimetic delivery strategy provides a versatile platform of cell delivery and activation for CAR-T cells in treating solid tumors.

2.
Cell Biochem Biophys ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319584

RESUMEN

The ubiquitin proteasome system is a highly specific and selective protein regulatory system that plays an essential role in the regulation of the cell cycle. Despite its significance, the role of ubiquitination in cardiomyocyte proliferation remains largely unclear. This study aimed to investigate the potential impact of E3 ubiquitin ligase ASB14 (Ankyrin Repeat And SOCS Box Containing 14) on cardiac regeneration. We conducted a microarray analysis of apical resection ventricle tissues, and our findings revealed that ASB14 was down-regulated during the cardiac regenerative response. Subsequently, we examined the effect of ASB14 silencing on cardiomyocyte nuclear proliferation both in vitro and in vivo. Our results indicated that ASB14 silencing promoted cardiomyocyte nuclear proliferation, suggesting that ASB14 may play a role in regulating cardiac regeneration. To further investigate the potential therapeutic implications of ASB14 deficiency, we examined the cardiac function of mice with ASB14 deficiency in response to ischemic injury. Our findings showed that mice with ASB14 deficiency exhibited preserved cardiac function and a therapeutic effect in response to ischemic injury, which was attributed to the enhancement of cardiomyocyte nuclear proliferation. To elucidate the underlying mechanisms, we investigated the effect of ASB14 on microtubule-associated protein RP/EB family member 2 (MAPRE2) protein degradation. Our results indicated that the loss of ASB14 decreased the degradation of MAPRE2 protein, subsequently promoting cardiomyocyte nuclear proliferation and enhancing cardiac repair after myocardial infarction (MI). In conclusion, our study provides evidence that inhibition of ASB14-mediated MAPRE2 ubiquitination promotes cardiomyocyte nuclear proliferation, which may serve as a potential target for treating heart failure induced by MI injury.

3.
Cell Mol Life Sci ; 80(11): 336, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37897511

RESUMEN

Hepatitis B virus (HBV) infection is a major public health problem worldwide, causing nearly one million deaths annually. OTUD5 is a deubiquitinase associated with cancer development and innate immunity response. However, the regulatory mechanisms of OTUD5 underlying HBV replication need to be deeply elucidated. In the present investigation, we found that HBV induced significant up-regulation of OTUD5 protein in HBV-infected cells. Further study showed that OTUD5 interacted with HBV core/precore, removing their K48-linked ubiquitination chains and protecting their stability. Meanwhile, overexpression of OTUD5 could inhibit the MAPK pathway and then increase the expression of HNF4ɑ, and ERK1/2 signaling was required for OTUD5-mediated activation of HNF4α, promoting HBV replication. Together, these data indicate that OTUD5 could deubiquitinate HBV core protein degradation by its deubiquitinase function and promote HBV activity by up-regulating HNF4α expression via inhibition of the ERK1/2 pathway. These results might present a novel therapeutic strategy against HBV infection.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Humanos , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos , Células Hep G2 , Ubiquitinación , Replicación Viral , Enzimas Desubicuitinizantes/genética
4.
Lab Chip ; 23(12): 2758-2765, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37222211

RESUMEN

The ability to efficiently detect low-abundance protein biomarkers in tiny blood samples is a significant challenge in clinical and laboratory settings. Currently, high-sensitivity approaches require specialized instrumentation, involve multiple washing steps, and lack the ability to parallelize, preventing their widespread implementation. Herein, we developed a parallelized, wash-free, and ultrasensitive centrifugal droplet digital protein detection (CDPro) technology that achieves a femtomolar limit of detection (LoD) of target proteins with sub-microliters of plasma. The CDPro combines two techniques, namely a centrifugal microdroplet generation device and a digital immuno-PCR assay. Miniaturized centrifugal devices enable emulsification of hundreds of samples within 3 minutes using a common centrifuge. The bead-free digital immuno-PCR assay not only eliminates the need for multistep washing, but also possesses ultra-high detection sensitivity and accuracy. We characterized the performance of CDPro using recombinant interleukins (IL-3 and IL-6) as example targets and reported a LoD of 0.0128 pg mL-1. We also quantified IL-6 from 7 human clinical blood samples using the CDPro with only 0.5 µL plasma, which showed excellent agreement with an existing clinical protein diagnostic system with 25 µL plasma from those samples (R2 = 0.98).


Asunto(s)
Interleucina-6 , Técnicas de Amplificación de Ácido Nucleico , Humanos , Reacción en Cadena de la Polimerasa , Límite de Detección
5.
Mol Med Rep ; 27(6)2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37203400

RESUMEN

Oral cancer is one of the leading causes of death worldwide, with a reported 5­year survival rate of ~50% after treatment. The treatment measures for oral cancer are very expensive and affordability is low. Thus, it is necessary to develop more effective therapies to treat oral cancer. A number of studies have found that miRNAs are invasive biomarkers and have therapeutic potential in a variety of cancers. The present study included 30 oral patients and 30 healthy controls. Clinicopathological characteristic and miR­216a­3p/ß­catenin expression level of 30 oral cancer patients were analyzed. In addition, two oral cancer cell lines (HSC­6 and CAL­27) were used for mechanism­of­action study. The expression level of miR­216a­3p was higher in oral cancer patients compared with healthy controls and positively associated with tumor stage. Inhibition of miR­216a­3p potently suppressed cell viability and induced apoptosis of oral cancer cells. It was found that effects of miR­216a­3p on oral cancer were through Wnt3a signaling. It was also found that the expression level of ß­catenin was higher in oral cancer patients compared with healthy controls and positively associated with tumor stage; the effects of miR­216a­3p on oral cancer were through ß­catenin. In conclusion, miR­216a­3p and the Wnt­ß­catenin signaling pathway may be interesting candidates to develop effective therapies for oral cancers.


Asunto(s)
MicroARNs , Neoplasias de la Boca , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neoplasias de la Boca/genética , Vía de Señalización Wnt , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo
6.
FEBS Open Bio ; 13(1): 195-208, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36468944

RESUMEN

Oral squamous cell carcinoma (OSCC) accounts for about 90% of oral cancers. Expression of the long noncoding RNA (lncRNA) maternally expressed 3 (MEG3) has previously been reported to be downregulated in OSCC, and its overexpression can inhibit proliferation, migration, and invasion and promote apoptosis of OSCC cells. However, the mechanism underlying MEG3 downregulation in OSCC has not been well characterized. Here we report that low expression of MEG3 is caused by H3K27me3 modification of the MEG3 gene locus, and this is associated with the poor prognosis of OSCC. Overexpression of MEG3 inhibited the proliferation and invasion of OSCC cells. We observed that MEG3 was modified by m6A and bound to YTHDC1. Enhancer-controlled genes positively regulated by MEG3 were functionally enriched for the 'negative regulation of Wnt signaling pathway' term, as determined using metascape. GATA3 was predicted to be a transcription factor for these genes, and was demonstrated to bind to MEG3. Knockdown of GATA3 countered the effects on proliferation, invasion, and increased transcription of HIC1 and PRICKLE1 induced by MEG3 overexpression. In conclusion, our data suggest that MEG3 is downregulated in OSCC due to trimethylation of H3K27 at the MEG3 gene locus. The inhibitory effect of MEG3 on proliferation and invasion of OSCC cells was dependent on the binding of GATA3.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , ARN Largo no Codificante , Humanos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Neoplasias de la Boca/metabolismo , Factor de Transcripción GATA3/genética
7.
Am J Hum Biol ; 35(5): e23855, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36579793

RESUMEN

BACKGROUND: The national obesity epidemic and trend of obesity prevalence have been characterized by a series of cross-sectional surveys in the United States, however, less is known about obesity prevalence trajectory by birth cohort. This study aimed to investigate whether trends in obesity and severe obesity prevalence varied by birth cohorts among 1940s-1990s in the United States. METHODS: Using data from the National Health and Nutrition Examination Survey 1999-2018. The trends of obesity and severe obesity prevalence were conducted with synthetic birth cohort. RESULTS: There were 60 981 participants (weighted mean age, 38.1 years; female, 50.1%) assigned in 6 birth cohorts (1990s, 1980s, 1970s, 1960s, 1950s, and 1940s) over 1999-2018. The prevalence of obesity and severe obesity increased significantly with age during all birth cohorts except for the 1940s (Ptrend <0.001). For obesity, a significant positive quadratic trend was observed among 1990s birth cohort (Pnon-linearity  = 0.037), while a significant positive linear trend (Plinearity <0.001) among 1980s, 1970s, 1960s, and 1950s birth cohorts. Corresponding to same weighted mean age, the prevalence of both obesity and severe obesity in younger birth cohorts were much higher than the older birth generations. CONCLUSIONS: The continued upward trend in obesity and severe obesity prevalence by birth cohort highlighted the need for continuing focus on surveillance of body mass index and identification, implementation, and evaluation of evidence-based interventions to address this major health problem in the United States.


Asunto(s)
Obesidad Mórbida , Humanos , Femenino , Estados Unidos/epidemiología , Adulto , Obesidad Mórbida/epidemiología , Prevalencia , Encuestas Nutricionales , Estudios Transversales , Obesidad/epidemiología , Índice de Masa Corporal
8.
Plant Commun ; 3(6): 100456, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36196059

RESUMEN

Dracaena, a remarkably long-lived and slowly maturing species of plant, is world famous for its ability to produce dragon's blood, a precious traditional medicine used by different cultures since ancient times. However, there is no detailed and high-quality genome available for this species at present; thus, the molecular mechanisms that underlie its important traits are largely unknown. These factors seriously limit the protection and regeneration of this rare and endangered plant resource. Here, we sequenced and assembled the genome of Dracaena cochinchinensis at the chromosome level. The D. cochinchinensis genome covers 1.21 Gb with a scaffold N50 of 50.06 Mb and encodes 31 619 predicted protein-coding genes. Analysis showed that D. cochinchinensis has undergone two whole-genome duplications and two bursts of long terminal repeat insertions. The expansion of two gene classes, cis-zeatin O-glucosyltransferase and small auxin upregulated RNA, were found to account for its longevity and slow growth. Two transcription factors (bHLH and MYB) were found to be core regulators of the flavonoid biosynthesis pathway, and reactive oxygen species were identified as the specific signaling molecules responsible for the injury-induced formation of dragon's blood. Our study provides high-quality genomic information relating to D. cochinchinensis and significant insight into the molecular mechanisms responsible for its longevity and formation of dragon's blood. These findings will facilitate resource protection and sustainable utilization of Dracaena.


Asunto(s)
Croton , Dracaena , Dracaena/genética , Dracaena/metabolismo , Longevidad , Resinas de Plantas/metabolismo , Croton/genética , Croton/metabolismo , Cromosomas/metabolismo
9.
BMC Plant Biol ; 22(1): 464, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36171555

RESUMEN

BACKGROUND: Agarwood is a valuable Chinese medicinal herb and spice that is produced from wounded Aquilaria spp., is widely used in Southeast Asia and is highly traded on the market. The lack of highly responsive Aquilaria lines has seriously restricted agarwood yield and the development of its industry. In this article, a comparative transcriptome analysis was carried out between ordinary A. sinensis and Chi-Nan germplasm, which is a kind of A. sinensis tree with high agarwood-producing capacity in response to wounding stress, to elucidate the molecular mechanism underlying wounding stress in different A. sinensis germplasm resources and to help identify and breed high agarwood-producing strains. RESULTS: A total of 2427 and 1153 differentially expressed genes (DEGs) were detected in wounded ordinary A. sinensis and Chi-Nan germplasm compared with the control groups, respectively. KEGG enrichment analysis revealed that genes participating in starch metabolism, secondary metabolism and plant hormone signal transduction might play major roles in the early regulation of wound stress. 86 DEGs related to oxygen metabolism, JA pathway and sesquiterpene biosynthesis were identified. The majority of the expression of these genes was differentially induced between two germplasm resources under wounding stress. 13 candidate genes related to defence and sesquiterpene biosynthesis were obtained by WGCNA. Furthermore, the expression pattern of genes were verified by qRT-PCR. The candidate genes expression levels were higher in Chi-Nan germplasm than that in ordinary A. sinensis during early stage of wounding stress, which may play important roles in regulating high agarwood-producing capacity in Chi-Nan germplasm. CONCLUSIONS: Compared with A. sinensis, Chi-Nan germplasm invoked different biological processes in response to wounding stress. The genes related to defence signals and sesquiterepene biosynthesis pathway were induced to expression differentially between two germplasm resources. A total of 13 candidate genes were identified, which may correlate with high agarwood-producting capacity in Chi-Nan germplasm during the early stage of wounding stress. These genes will contribute to the development of functional molecular markers and the rapid breeding highly of responsive Aquilaria lines.


Asunto(s)
Sesquiterpenos , Thymelaeaceae , Perfilación de la Expresión Génica , Oxígeno/metabolismo , Fitomejoramiento , Reguladores del Crecimiento de las Plantas/metabolismo , Sesquiterpenos/metabolismo , Almidón/metabolismo , Thymelaeaceae/genética , Thymelaeaceae/metabolismo
10.
Front Bioeng Biotechnol ; 10: 856651, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36082170

RESUMEN

Due to the emergence of multi-drug resistant microorganisms, the development and discovery of alternative eco-friendly antimicrobial agents have become a top priority. In this study, a simple, novel, and valid green method was developed to synthesize Litsea cubeba essential oil-silver nanoparticles (Lceo-AgNPs) using Lceo as a reducing and capping agent. The maximum UV absorbance of Lceo-AgNPs appeared at 423 nm and the size was 5-15 nm through transmission electron microscopy result. The results of Fourier transform infrared and DLS showed that Lceo provided sufficient chemical bonds for Lceo-AgNPs to reinforce its stability and dispersion. The in vitro antibacterial effects of Lceo-AgNPs against microbial susceptible multidrug-resistant Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) were determined. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Lceo-AgNPs against E. coli were 25 and 50 µg/ml. The MIC and MBC of Lceo-AgNPs against MRSA were 50 and 100 µg/ml, respectively. The results of scanning electron microscopy showed that the amount of bacteria obviously decreased and the bacteria cells were destroyed by Lceo-AgNPs. In vivo research disclosed significant wound healing and re-epithelialization effects in the Lceo-AgNPs group compared with the self-healing group and the healing activity was better than in the sulfadiazine silver group. In this experiment, Lceo-AgNPs has been shown to have effects on killing multidrug-resistant bacteria and promoting wound healing. This study suggested Lceo-AgNPs as an excellent new-type drug for wound treatment infected with multidrug-resistant bacteria, and now expects to proceed with clinical research.

11.
Microorganisms ; 10(8)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-36013966

RESUMEN

Coccidiosis is a well-known poultry disease that causes the severe destruction of the intestinal tract, resulting in reduced growth performance and immunity, disrupted gut homeostasis and perturbed gut microbiota. Supplementation of probiotics were explored to play a key role in improving growth performance, enhancing innate and adaptive immunity, maintaining gut homeostasis and modulating gut microbiota during enteric infection. This study was therefore designed to investigate the chicken gut whole microbiota responses to Bacillus subtilis (B. subtilis) probiotic feeding in the presence as well as absence of Eimeria infection. For that purpose, 84 newly hatched chicks were assigned into four groups, including (1) non-treated non-challenged control group (CG - ET), (2) non-treated challenged control group (CG + ET), (3) B. subtilis-fed non-challenged group (BS - ET) and (4) B. subtilis-fed challenged group (BS + ET). CG + ET and BS + ET groups were challenged with Eimeria tenella (E. tenella) on 21 day of housing. Our results for Alpha diversity revealed that chickens in both infected groups (CG + ET and BS + ET) had lowest indexes of Ace, Chao 1 and Shannon, while highest indexes of Simpson were found in comparison to non-challenged groups (CG - ET and BS - ET). Firmicutes was the most affected phylum in all experimental groups following Proteobacteria and Bacteroidota, which showed increased abundance in both non-challenged groups, whereas Proteobacteria and Bacteroidota affected both challenged groups. The linear discriminant analysis effect size method (lEfSe) analysis revealed that compared to the CG + ET group, supplementation of probiotic in the presence of Eimeria infection increased the abundance of some commensal genera, included Clostridium sensu stricto 1, Corynebacterium, Enterococcus, Romboutsia, Subdoligranulum, Bacillus, Turicibacter and Weissella, with roles in butyrate production, anti-inflammation, metabolic reactions and the modulation of protective pathways against pathogens. Collectively, these findings evidenced that supplementation of B. subtilis probiotic was positively influenced with commensal genera, thereby alleviating the Eimeria-induced intestinal disruption.

12.
Front Nutr ; 9: 921773, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782941

RESUMEN

The purpose of this experiment was to investigate the effects of different sources of calcium on immune performance, diarrhea rate, intestinal barrier, and post-intestinal flora structure and function in weaned piglets. A total of 1,000 weaned piglets were randomly assigned to five groups 10 replicate pens per treatment, 20 piglets per pen and fed calcium carbonate, calcium citrate, multiple calcium, and organic trace minerals of different concentrations of acidifier diets. The results of the study showed that the replacement of calcium carbonate with calcium citrate and multiple calcium had almost no significant effect on immune indexes (IL-1ß, IL-6, IL-10, TNF-α) of piglets compared with the control group (p > 0.05). The five groups did not show a change in the diarrhea rate and diarrhea index (p > 0.05). The diet containing multiple calcium dramatically decreased the TP compared to the C and L diet (p < 0.05). No significant difference in HDL was noted in the five groups (p > 0.05). However, the concentration of LDL in blood in the multiple calcium group was significantly higher than that in groups L and D (p < 0.05). Moreover, the concentration of Glu in blood in the multiple calcium group was significantly higher than that in group C (p < 0.05). Compared with the control group, calcium citrate plus organic trace minerals diet markedly increased UCG-005 abundance in the colon (p < 0.05). In addition, the relative abundance of Prevotellaceae_NK3B31_group had an upward trend in the colon of the M group compared to the D group (p = 0.070). Meanwhile, calcium citrate plus organic trace minerals diet markedly increased Clostridium_sensu_stricto_1 abundance in the colon (p < 0.05). Metagenomic predictions by PICRUSt suggested that the colonic and fecal microbiota was mainly involved in carbohydrate metabolism, amino acid metabolism, energy metabolism, and metabolism of cofactors and vitamins.

13.
Front Nutr ; 9: 940217, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782952

RESUMEN

The purpose of this experiment was to investigate the effects of different protein levels on lipid metabolism and gut microbes in mice of different genders. A total of 60 mice (30 female and 30 male) were randomly assigned to six groups and fed female mice with low protein diet (FLP), basal protein diet (FBD), and high protein diet (FHP). Similarly, the male mice fed with low protein diet (MLP), basal protein diet (MBD), and high protein diet (MHP). The low protein diet contained 14% CP, the basal diet contained 20% CP, and the high protein diet contained 26% CP. The results of the study showed that both basal and high protein diets significantly reduced the perirenal adipose tissues (PEAT) index in male mice compared to low protein diet (p < 0.05). For the gut, the FHP significantly increased the relative gut weight compared to the FBD and FLP (p < 0.05). At the same time, the FHP also significantly increased the relative gut length compared with the FBD and FLP (p < 0.05). The MHP significantly increased TC concentration compared with the MLP (p < 0.05), and the MBD tended to increase TC concentration compared with the MLP in serum (p = 0.084). The histomorphology result of the jejunum and ileum showed that a low protein diet was beneficial to the digestion and absorption of nutrients in the small intestine of mice. While different protein levels had no effect on the total number of fecal microbial species in mice, different protein levels had a significant effect on certain fecal microbes in mice, the absolute abundance of Verrucomicrobia in the feces of male mice was significantly higher in both high and basal protein diets than in the low protein diet (p < 0.05). The high protein diet significantly reduced the absolute abundance of Patescibacteria in the feces of female mice compared to both the basal and low protein diets (p < 0.05). The absolute abundance of Patescibacteria in male feces was not affected by dietary protein levels (p > 0.05). Taken together, our results suggest that a low protein diet can alter fat deposition and lipid metabolism in mice, and that it benefited small intestinal epithelial structure and microbes.

14.
PLoS One ; 17(6): e0270167, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35709217

RESUMEN

Recently, Qi-Nan germplasm, the germplasm of Aquilaria species that easily forms agarwood, has been widely cultivated in Guangdong and Hainan Provinces in China. Since the morphological characteristics of Qi-Nan germplasm are similar to those of Aquilaria species and germplasm is bred by grafting, it is difficult to determine the source species of this germplasm by traditional taxonomic characteristics. In this study, we performed a DNA barcoding analysis of 58 major Qi-Nan germplasms as well as Aquilaria sinensis, A. yunnanensis, A. crassna, A. malaccensis and A. hirta with 5 primers (nuclear gene internal transcribed spacer 2 (ITS2) and the chloroplast genes matK, trnH-psbA, rbcL and trnL-trnF). This field survey in the Qi-Nan germplasm plantations in Guangdong and Hainan Provinces aimed to accurately identify the source species of Qi-Nan germplasm. According to the results, ITS2 and matK showed the most variability and the highest divergence at all genetic distances. This ITS2+matK combination, screened for with TaxonDNA analysis, showed the highest success rate in species identification of the Qi-Nan germplasm. Clustering in the phylogenetic trees constructed with Bayesian inference and maximum likelihood indicated that the Qi-Nan germplasm was most closely related to A. sinensis and more distantly related to A. yunnanensis, A. crassna, A. malaccensis and A. hirta. Therefore, this study determined that the source species of the Qi-Nan germplasm is A. sinensis.


Asunto(s)
Fitomejoramiento , Thymelaeaceae , Teorema de Bayes , China , Código de Barras del ADN Taxonómico/métodos , ADN de Plantas/genética , Filogenia , Thymelaeaceae/genética
15.
Front Nutr ; 9: 885497, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571955

RESUMEN

Despite a well-documented effect of calcium on the piglet's intestinal microbiota composition, it is less known about changes in microbial function or the effect of different sources of calcium. The experiment was designed to study the effects of dietary calcium from different sources on production, immune indexes, antioxidant capacity, serum biochemical indexes, and intestinal microflora of weaning piglets. A total of 1,000 piglets were randomly assigned to five groups (10 replicate pens per treatment with 20 pigs per pen) and fed diets supplemented with calcium carbonate, calcium citrate, multiple calcium, organic trace minerals, and different concentrations of acidifier. The results showed that the replacement of calcium carbonate with calcium citrate and multiple calcium had almost no significant difference in the growth performance of pigs compared with the control group, and only the diet of multiple calcium dramatically decreased the average daily feed intake (ADFI) compared to the calcium citrate diet on days 15-28 (p < 0.05). The five groups did not change the content of MDA, SOD, and GSH-Px (p > 0.10). A similar situation occurs in the immune function of the blood. There was no significant effect in immune indexes (IgA, IgG, and IgM) among different treatments after weaning at 6 weeks for piglets (p > 0.10). The 16S rRNA sequencing of ileal and cecal microbiota revealed that only the relative abundance of Actinobacteriota at the phyla level was significantly greater in the ileum of the A group compared to the other treatments (p < 0.05). There was a clear effect on seven bacteria in the top 30 genera of ileum and cecum for five groups (p < 0.05). The result of PICRUSt predicted that the intestinal microbe was mainly involved in carbohydrate and amino acid metabolism, membrane transport, and metabolism of cofactors and vitamins. Besides, adding calcium citrate to a weaned piglet diet is better than other choices from the third week to the fourth week. In conclusion, diets with different calcium sources changed ADFI and some intestinal microbial composition of weaned piglets but had little effect on intestinal microbial function.

16.
Sci Rep ; 12(1): 7194, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35505005

RESUMEN

The basic helix-loop-helix (bHLH) transcription factors are involved in several biological processes both in plant development and stress responses. Agarwood, a major active and economical product, is only induced and accumulated when the roots, stems, or branches are wounded in Aquilaria sinensis. Although genome-wide comprehensive analyses of the bHLH family have been identified in many plants, no systematic study of the genes in this family has been conducted in A. sinensis. In this study, 105 bHLH genes were identified in A. sinensis through genome-wide analysis and named according to their chromosomal locations. Based on a phylogenetic tree, AsbHLH family proteins were classified into 18 subfamilies. Most of them were distributed on eight chromosomes, with the exception of two genes. Based on the tissue-specific expression characteristics and expression patterns in response to methyl jasmonate (MeJA) treatment, seven AsbHLH genes were likely involved in wound-induced agarwood formation. The results provide comprehensive information on AsbHLHs that can be used to elucidate the molecular functions and physiological roles of these proteins in A. sinensis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Thymelaeaceae , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Genoma de Planta , Familia de Multigenes , Filogenia , Thymelaeaceae/genética , Thymelaeaceae/metabolismo
17.
Microsc Res Tech ; 85(8): 2904-2912, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35491427

RESUMEN

Agarwood, a non-timber fragrant wood, is derived from wounded Aquilaria trees (Thymelaeaceae) and is widely used in traditional medicine, incense and perfume. Agarwood-like substances and programmed cell death (PCD) can be induced by wounding signals in the suspension cells and aerial roots of Aquilaria sinensis. In this study, the dynamic process of wound-induced agarwood formation in stems of A. sinensis was observed, and the occurrence of PCD was synchronously detected using techniques such as 4',6-diamidino-2-phenylindole and dUTP nick-end labeling staining. The results showed that the wounding was a induce signal for agarwood resin formation, meanwhile might induce PCD. Interxylary phloem and xylem ray were the main sites of agarwood resin formation and PCD occurrence. There might be a relationship between the spatiotemporal pattern of PCD and agarwood resin formation: more severe PCD corresponded to a higher rate of resin formation but a shorter resin formation time; conversely, slower PCD progression corresponded to a lower rate of resin formation but a longer resin formation time. Our findings are the first to demonstrate that PCD might occur in the process of wound-induced agarwood formation at the tree level, and the spatiotemporal pattern is closely related to the formation of agarwood resin. This study provides valuable insight for further studies on the relationship between PCD and agarwood formation. HIGHLIGHTS: Programmed cell death (PCD) might occur in the process of wound-induced agarwood formation at the tree level. Interxylary phloem and xylem ray were the main sites of agarwood resin formation and PCD occurrence. Spatiotemporal pattern of PCD might have a strong impact on agarwood resin formation.


Asunto(s)
Thymelaeaceae , Apoptosis , Resinas de Plantas , Thymelaeaceae/metabolismo , Madera
18.
Front Vet Sci ; 9: 868433, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35445100

RESUMEN

The protective effects of polysaccharides from Abrus cantoniensis Hance (ACP) on antioxidant capacity, immune function, the hypothalamus-pituitary-adrenal (HPA) axis balance, the intestinal mucosal barrier, and intestinal microflora in heat stress (HS)-induced heat-injured chickens are rarely reported. The purpose of this study was to investigate the protective effects of ACP on HS-injured chickens by enhancing antioxidant capacity and immune function, repairing the intestinal mucosal barrier, and regulating intestinal microflora. A total of 120 native roosters in Guangxi were randomly divided into 5 groups to evaluate the protective effect of ACP on chickens injured by HS (33 ± 2°C). The results showed that ACP increased the body weight and the immune organ index of heat-injured chickens, regulated the oxidative stress kinase secretion, and restored the antioxidant level of heat-injured birds. ACP significantly inhibited the secretion of corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosterone (COR) and reversed the disorder of hormone levels caused by HS. ACP significantly regulated the secretion levels of immune cytokines and restored the immune function of the body. ACP significantly improved the intestinal morphology and increased the expression levels of tight junction proteins, which had a positive effect on protecting intestinal health. The results of high-throughput sequencing of the 16S rRNA gene showed that HS led to an increase in the abundance of harmful bacteria and an abnormal increase in the abundance of intestinal microflora and that ACP restored the HS-induced intestinal microflora imbalance. In conclusion, this study provides a scientific basis for ACP as an antioxidant activity enhancer to reduce liver injury, regulate intestinal microflora, and protect intestinal mucosal damage in chickens.

19.
Front Vet Sci ; 9: 833842, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372558

RESUMEN

The protective effects of Caulis Spatholobi polysaccharide (CSP) on immune function, intestinal mucosal barrier, and intestinal microflora in cyclophosphamide (CY)-induced immunosuppressed chickens have been rarely reported. This study was designed to investigate the cecal microbiota in chickens and to elucidate the immune mechanism involved in the CSP effect on CY induced-immunosuppressed chickens. A total of 288 cocks were equally divided into six groups and used to evaluate the immune effect of CSP. Results showed that the CSP increased the body weight and immune organ index of immunosuppressed chickens, significantly increased the secretion of cytokines (IL-4, IL-10) and immunoglobulins (IgG, IgM) in sera of chickens, and restored the body immune function. The CSP reduced intestinal injury of the jejunum and ileum, increased the ratio of the intestinal villus height to crypt depth (V/C), improved the expression of tight junction protein, and protected intestinal health. The CSP activated the toll-like receptor (TLR)/MyD88/NF-κB pathway and enhanced the expression of TLR4, MyD88, NF-κB, Claudin1, and Zo-1, protecting the intestinal tract. High-throughput sequencing of the 16S rRNA gene showed that CSP increased species richness, restored CY-induced intestinal microbiome imbalance, and enhanced the abundance of Lactobacillus in the intestinal tract. In conclusion, our study provided a scientific basis for CSP as an immune enhancer to regulate intestinal microflora and protect intestinal mucosal damage in chickens.

20.
Front Vet Sci ; 9: 849518, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372563

RESUMEN

Gegen Qinlian Decoction is a long-established Chinese herbal compound for the treatment of diarrhea and dysentery, while Magnolia officinalis has been demonstrated to have some anthelmintic activity. The preliminary screening of this study showed that the addition of Modified Gegen Qinlian Decoction has some effective on the prevention and treatment of coccidiosis in chickens. However, the mechanism of its treatment of chicken coccidiosis is not clear. The network pharmacology study was based on the screening of chemical components and related targets from TCMSP and PharmMapper server databases. Genes related to chicken coccidiosis were obtained from the SRA database, and those genes that intersected with the target genes of Modified Gegen Qinlian Decoction were screened. By exploring the target interactions through the String system and enrichment analysis by the Metascape system, the mechanism of action of Modified Gegen Qinlian Decoction in chicken coccidiosis was identified. Using real-time quantitative polymerase chain reaction (RT-qPCR) to analyze the mRNA levels of the relevant factors in chicken coccidiosis, molecular docking was used to reveal the extent of binding of the key target genes predicted in the network pharmacology by the action of Modified Gegen Qinlian Decoction. Compound and target screening suggested that the 99 chemical targets of Modified Gegen Qinlian Decoction were involved in chicken coccidiosis, and the enrichment results of KEGG pathway suggested that Modified Gegen Qinlian Decoction was significantly associated with PI3K/AKT signaling pathway in chicken coccidiosis. The Hubba gene module in Cytoscape_v3.7.1 software was used to analyze the network topology to obtain the Hubba gene SRC, STAT3, and PPARG, etc. The molecular docking results showed that SRC, STAT3, and PPARG were key targets in the treatment of coccidiosis in chickens by Modified Gegen Qinlian Decoction, which was in agreement with the RT-qPCR results. Through network pharmacology, molecular docking and in vitro experiments, it was confirmed that Modified Gegen Qinlian Decoction fights against chicken coccidiosis through key targets such as SRC, STAT3, and PPARG.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA