Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 174-181, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38650145

RESUMEN

Ovarian cancer is a prevalent malignancy in the female reproductive system, representing a significantly fatal and incurable tumor. Chelerythrine (CHE), a natural benzopyridine alkaloid, has demonstrated a broad spectrum of anticancer activities. Nevertheless, the ovarian cancer inhibitory impact of CHE remains unclear. In this study, we investigated the cytotoxic mechanism and potential targets of CHE on in vitro cultures of A2780 and SKOV3 cells derived from ovarian cancer. Additionally, in vivo experiments were conducted to confirm the suppressive impact of CHE on tumor growth in nude mice. The findings revealed that CHE impeded the growth of A2780 and SKOV3 cells in a concentration-time-dependent manner and significantly suppressed the development of tumors in nude mice. CHE elevated the level of oxidative stress in tumor cells, prompted cell cycle halt in the S phase, and increased their mitochondrial membrane potential. Western blotting results demonstrated that CHE could modulate the expression of proteins associated with apoptotic and ferroptosis processes in A2780 and SKOV3 cells. Nrf2 was verified to be an upstream key target mediating the inhibitory impact of CHE on ovarian cancer cells. In summary, CHE exerts its anti-cancer effects on ovarian cancer by modulating Nrf2, inhibiting cellular proliferation, and promoting apoptosis and ferroptosis.


Asunto(s)
Apoptosis , Benzofenantridinas , Proliferación Celular , Ferroptosis , Ratones Desnudos , Factor 2 Relacionado con NF-E2 , Neoplasias Ováricas , Femenino , Benzofenantridinas/farmacología , Humanos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Línea Celular Tumoral , Ferroptosis/efectos de los fármacos , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos BALB C , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
2.
Molecules ; 29(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38675549

RESUMEN

Derived from hazelnuts, hazel leaf has been utilized in traditional folk medicine for centuries in countries such as Portugal, Sweden, and Iran. In our previous investigations, we conducted a preliminary assessment of the hazel leaf polyphenol extract (referred to as ZP) and identified nine compounds, such as kaempferol and chlorogenic acid, in its composition. ZP has shown promising properties as an antioxidant and anti-inflammatory agent. Our research has revealed that ZP has protective effects against cisplatin-induced acute kidney injury (AKI). We conducted a comprehensive examination of both the pathological and ultrastructural aspects and found that ZP effectively ameliorated renal tissue lesions and mitigated mitochondrial damage. Moreover, ZP significantly suppressed malondialdehyde levels while increasing glutathione and catalase concentrations in the kidneys of AKI-induced mice. ZP decreased the number of apoptotic cells and decreased pro-apoptotic protein expression in the kidneys of mice and human renal tubular epithelial cells (HK-2). Furthermore, treatment with ZP increased the levels of proteins marking anti-ferroptosis, such as GPX4, FTH1, and FSP1, in experiments both in vivo and in vitro. We elucidated the underlying mechanisms of ZP's actions, revealing its inhibitory effect on Yap phosphorylation and its regulation of Lats expression, which exert a protective influence on the kidneys. Furthermore, we found that inhibiting the Hippo pathway compromised ZP's nephroprotective effects in both in vitro and in vivo studies. In summary, this research shows that ZP exhibits renoprotective properties, effectively reducing oxidative damage, apoptosis, and ferroptosis in the kidneys by targeting the Hippo pathway.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Ferroptosis , Vía de Señalización Hippo , Extractos Vegetales , Hojas de la Planta , Polifenoles , Transducción de Señal , Animales , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/inducido químicamente , Ferroptosis/efectos de los fármacos , Cisplatino/efectos adversos , Polifenoles/farmacología , Polifenoles/química , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/química , Humanos , Transducción de Señal/efectos de los fármacos , Hojas de la Planta/química , Proteínas Serina-Treonina Quinasas/metabolismo , Masculino , Línea Celular , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Estrés Oxidativo/efectos de los fármacos
3.
Molecules ; 29(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38257230

RESUMEN

Hazel leaf, a by-product of hazelnuts, is commonly used in traditional folk medicine in Portugal, Sweden, Iran and other regions for properties such as vascular protection, anti-bleeding, anti-edema, anti-infection, and pain relief. Based on our previous studies, the polyphenol extract from hazel leaf was identified and quantified via HPLC fingerprint. The contents of nine compounds including kaempferol, chlorogenic acid, myricetin, caffeic acid, p-coumaric acid, resveratrol, luteolin, gallic acid and ellagic acid in hazel leaf polyphenol extract (ZP) were preliminary calculated, among which kaempferol was the highest with 221.99 mg/g, followed by chlorogenic acid with 8.23 mg/g. The inhibition of ZP on α-glucosidase and xanthine oxidase activities was determined via the chemical method, and the inhibition on xanthine oxidase was better. Then, the effect of ZP on hyperuricemia zebrafish was investigated. It was found that ZP obviously reduced the levels of uric acid, xanthine oxidase, urea nitrogen and creatinine, and up-regulated the expression ofOAT1 and HPRT genes in hyperuricemia zebrafish. Finally, the targeted network pharmacological analysis and molecular docking of nine polyphenol compounds were performed to search for relevant mechanisms for alleviating hyperuricemia. These results will provide a valuable basis for the development and application of hazel leaf polyphenols as functional ingredients.


Asunto(s)
Corylus , Hiperuricemia , Animales , Polifenoles/farmacología , Ácido Clorogénico/farmacología , Simulación del Acoplamiento Molecular , Pez Cebra , Farmacología en Red , Quempferoles , Hiperuricemia/tratamiento farmacológico , Xantina Oxidasa , Extractos Vegetales/farmacología
4.
Int J Biol Macromol ; 256(Pt 2): 128538, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043651

RESUMEN

Hazelnut is one of the most popular nuts in the world, rich in nutrients and various active substances. In this study, soluble dietary fiber (SDF) was extracted from hazelnut kernels, and its physicochemical properties and absorbability were explored. Hazelnut-SDF exhibited ideal water-holding, oil-holding and swelling capacity, and glucose, cholesterol and cholate absorbing ability. Scanning electron microscopy and fourier transform infrared spectroscopy showed that hazelnut-SDF had typical polysaccharide structure of functional groups. The main monosaccharides were identified as arabinose, rhamnose, xylose, ribose, glucuronic acid, mannose and glucose by gas chromatography-mass spectrometry. In high-fat diet rats, hazelnut-SDF could improve serum lipid parameters, inhibit lipid accumulation in liver and adipocytes, and regulate the expression level of liver lipid synthesis-related genes. It also could adjust intestinal short chain fatty acids, promote the composition and structure of intestinal microbiota, and significantly balance the abundance of Alloprevotella, Fusicatenibacter, Lactobacillus, Roseburia, Ruminococcaceae_UCG-005, Ruminococcaceae_UCG-014 and Clostridiales. The results concluded that oral administration of hazelnut-SDF could alleviate hyperlipidemia and obesity, and might serve as a potential functional food ingredient.


Asunto(s)
Corylus , Microbioma Gastrointestinal , Ratas , Animales , Dieta Alta en Grasa/efectos adversos , Fibras de la Dieta/farmacología , Fibras de la Dieta/análisis , Colesterol/farmacología , Glucosa/farmacología
5.
J Pharm Biomed Anal ; 239: 115919, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38134707

RESUMEN

Testicular dysfunction is distinguished by a deficiency in testosterone levels, which can be attributed to the occurrence of oxidative stress injury in Leydig cells. The empirical prescription known as Bushen Zhuanggu Tang, developed by a highly experienced traditional Chinese medicine practitioner with six decades of clinical expertize, aligns with the traditional Chinese medicine principle of "kidney governing bone". Researchers have demonstrated that the administration of BSZGT can effectively enhance testosterone production. The objective of this study is to investigate the potential anti-testicular dysfunction effects of BSZGT and elucidate its underlying mechanism in an in vitro setting. Specifically, the impact of oxidative stress induced by H2O2 on the activity and testosterone levels of Leydig cells (TM3) was examined. Furthermore, the utilization of UPLC-QE-Qrbitrap-MS enabled the identification of the involvement of BSZGT in various metabolic pathways, including arginine biosynthesis, amino acyl-tRNA biosynthesis, Alanine, aspartate and glutamine metabolism, and Citrate Cycle, through the modulation of 25 distinct metabolites. Additionally, a network pharmacological analysis was conducted to investigate the pivotal protein targets associated with the therapeutic effects of BSZGT. The findings demonstrate the identification of six key proteins (CYP19A1, CYP1B1, ALOX5, ARG1, XDH, and MPO) that play a significant role in augmenting testicular function through their involvement in the ovarian steroid production pathway. In summary, our study presents a comprehensive research methodology that combines cell metabonomics and network pharmacology to enhance the discovery of new therapeutic agents for TD.


Asunto(s)
Medicamentos Herbarios Chinos , Farmacología en Red , Masculino , Humanos , Peróxido de Hidrógeno , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Metabolómica/métodos , Testosterona
6.
Front Nutr ; 10: 1092071, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36819681

RESUMEN

Hazel leaf, one of the by-products of hazelnut, which is widely used in traditional folk medicine around the world. In the present study, the profile of free, conjugated, and bound phenolic compounds from hazel leaf was detected and their antioxidant and anti-inflammatory activities were investigated. The potential health benefits of different phenolic compounds were also predicted. The results showed that the 35 phenolic substances of free, conjugated and bound forms were identified including phenolic acids, flavonoids and catechins. Most of the hazel leaf phenolics were presented in free form, followed by conjugated and bound form. All the fractions effectively inhibited the production of reactive oxygen species and malondialdehyde in TBHP-stimulated human umbilical vein endothelial cells by enhancing endogenous superoxide dismutase, and accordingly alleviated inflammatory cytokines (NO, IL-1ß, TNF-α, and IL-6) in LPS-stimulated RAW264.7 cells, showing obvious antioxidant and anti-inflammatory capacity. Moreover, combined with network pharmacology, the potential therapeutic effects and functional pathways of hazel leaf phenolics were predicted, which provided value basis for exploring their treatment on diseases and developing health products in the future.

7.
Integr Cancer Ther ; 21: 15347354221101203, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35615883

RESUMEN

Ginsenosides, as the most important constituents of ginseng, have been extensively investigated in cancer chemoprevention and therapeutics. Among the ginsenosides, Compound K (CK), a rare protopanaxadiol type of ginsenoside, has been most broadly used for cancer treatment due to its high anticancer bioactivity. However, the functional mechanism of CK in cancer is not well known. This review describes the structure, transformation and pharmacological activity of CK and discusses the functional mechanisms of CK and its metabolites, which regulate signaling pathways related to tumor growth and metastasis. CK inhibits tumor growth by inducing tumor apoptosis and tumor cell differentiation, regulates the tumor microenvironment by suppressing tumor angiogenesis-related proteins, and downregulates the roles of immunosuppressive cells, such as myeloid-derived suppressor cells (MDSCs). There is currently much research on the potential development of CK as a new strategy when administered alone or in combination with other compounds.


Asunto(s)
Ginsenósidos , Neoplasias , Panax , Apoptosis , Ginsenósidos/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Neovascularización Patológica , Panax/metabolismo , Microambiente Tumoral
8.
Biomed Res Int ; 2021: 9140191, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34934771

RESUMEN

Ginsenoside CK is the main metabolite of protopanaxadiol saponins in intestinal bacteria. Previous studies have shown that ginsenoside CK can affect many aspects of tumor development through a variety of mechanisms. However, few studies have reported the antimetastatic effects of ginsenoside CK in non-small-cell lung cancer (NSCLC). In this study, we explored the effect of ginsenoside CK on epithelial-mesenchymal transition (EMT) induced by TGF-ß in A549 cells and the potential molecular mechanisms. Our data showed that ginsenoside CK effectively prevented TGF-ß-induced EMT, as indicated by the upregulation of E-cadherin and downregulation of vimentin. Furthermore, ginsenoside CK inhibited the metastatic ability of A549 cells in the tail vein lung metastasis model of nude mice. Additionally, ginsenoside CK decreased the expression of silent information regulator 2 homolog 1 (SIRT1) in the inhibition of EMT induced by TGF-ß. Moreover, the antimetastatic effect of ginsenoside CK was reversed by SIRT1 overexpression. Generally, our results indicated the antimetastatic effect and underlying mechanism of ginsenoside CK on TGF-ß-induced EMT in A549 cells, suggesting that ginsenoside CK can be used as an effective antineoplastic agent.


Asunto(s)
Transición Epitelial-Mesenquimal/efectos de los fármacos , Ginsenósidos/farmacología , Sirtuina 1/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Células A549 , Animales , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Regulación hacia Arriba/efectos de los fármacos , Vimentina/metabolismo
9.
Front Cardiovasc Med ; 8: 659643, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124197

RESUMEN

Adriamycin (ADR)-based combination chemotherapy is the standard treatment for some patients with tumors in clinical, however, long-term application can cause dose-dependent cardiotoxicity. Pilose Antler, as a traditional Chinese medicine, first appeared in the Han Dynasty and has been used to treat heart disease for nearly a thousand years. Previous data revealed pilose antler polypeptide (PAP, 3.2KD) was one of its main active components with multiple biological activities for cardiomyopathy. PAP-3.2KD exerts protective effects againt myocardial fibrosis. The present study demonstrated the protective mechanism of PAP-3.2KD against Adriamycin (ADR)-induced myocardial injury through using animal model with ADR-induced myocardial injury. PAP-3.2KD markedly improved the weight increase and decreased the HW/BW index, heart rate, and ST height in ADR-induced groups. Additionally, PAP-3.2KD reversed histopathological changes (such as disordered muscle bundles, myocardial fibrosis and diffuse myocardial cellular edema) and scores of the heart tissue, ameliorated the myocardial fibrosis and collagen volume fraction through pathological examination, significantly increased the protein level of Bcl-2, and decreased the expression levels of Bax and caspase-3 in myocardial tissue by ELISA, compared to those in ADR-induced group. Furthermore, ADR stimulation induced the increased protein levels of TGF-ß1 and SMAD2/3/4, the increased phosphorylation levels of SMAD2/3 and the reduced protein levels of SMAD7. The expression levels of protein above in ADR-induced group were remarkably reversed in PAP-3.2KD-treated groups. PAP-3.2KD ameliorated ADR-induced myocardial injury by regulating the TGF-ß/SMAD signaling pathway. Thus, these results provide a strong rationale for the protective effects of PAP against ADR-induced myocardial injury, when ADR is used to treat cancer.

10.
Front Cell Dev Biol ; 9: 635122, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33748122

RESUMEN

The tumor microenvironment (TME) is composed of tumor cells, blood/lymphatic vessels, the tumor stroma, and tumor-infiltrating myeloid precursors (TIMPs) as a sophisticated pathological system to provide the survival environment for tumor cells and facilitate tumor metastasis. In TME, TIMPs, mainly including tumor-associated macrophage (TAM), tumor-associated dendritic cells (DCs), and myeloid-derived suppressor cells (MDSCs), play important roles in repressing the antitumor activity of T cell or other immune cells. Therefore, targeting those cells would be one novel efficient method to retard cancer progression. Numerous studies have shown that traditional Chinese medicine (TCM) has made extensive research in tumor immunotherapy. In the review, we demonstrate that Chinese herbal medicine (CHM) and its components induce tumor cell apoptosis, directly inhibiting tumor growth and invasion. Further, we discuss that TCM regulates TME to promote effective antitumor immune response, downregulates the numbers and function of TAMs/MDSCs, and enhances the antigen presentation ability of mature DCs. We also review the therapeutic effects of TCM herbs and their ingredients on TIMPs in TME and systemically analyze the regulatory mechanisms of TCM on those cells to have a deeper understanding of TCM in tumor immunotherapy. Those investigations on TCM may provide novel ideas for cancer treatment.

11.
BMC Pharmacol Toxicol ; 21(1): 59, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32762728

RESUMEN

BACKGROUND: Non-alcoholic fatty liver is one of the most common comorbidities of diabetes. It can cause disturbance of glucose and lipid metabolism in the body, gradually develop into liver fibrosis, and even cause liver cirrhosis. Mangiferin has a variety of pharmacological activities, especially for the improvement of glycolipid metabolism and liver injury. However, its poor oral absorption and low bioavailability limit its further clinical development and application. The modification of mangiferin derivatives is the current research hotspot to solve this problem. METHODS: The plasma pharmacokinetic of mangiferin calcium salt (MCS) and mangiferin were monitored by HPLC. The urine metabolomics of MCS were conducted by UPLC-Q-TOF-MS. RESULTS: The pharmacokinetic parameters of MCS have been varied, and the oral absorption effect of MCS was better than mangiferin. Also MCS had a good therapeutic effect on type 2 diabetes and NAFLD rats by regulating glucose and lipid metabolism. Sixteen potential biomarkers had been identified based on metabolomics which were related to the corresponding pathways including Pantothenate and CoA biosynthesis, fatty acid biosynthesis, citric acid cycle, arginine biosynthesis, tryptophan metabolism, etc. CONCLUSIONS: The present study validated the favorable pharmacokinetic profiles of MCS and the biochemical mechanisms of MCS in treating type 2 diabetes and NAFLD.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Xantonas/farmacocinética , Animales , Biomarcadores/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/orina , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/orina , Femenino , Masculino , Metabolómica , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/orina , Ratas Sprague-Dawley , Sales (Química)/sangre , Sales (Química)/farmacocinética , Sales (Química)/orina , Xantonas/sangre , Xantonas/orina
12.
Oncol Lett ; 17(6): 5581-5589, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31186780

RESUMEN

The flavonoid compound scutellarin (Scu) is a traditional Chinese medicine used to treat a variety of diseases; however, the use of scutellarein (Scue), the hydrolysate of Scu, and its mechanisms of action in Alzheimer's disease (AD) have not been fully elucidated. In the present study, the effects of Scue on amyloid ß (Aß)-induced AD-like pathology were investigated. An in vitro model of inflammation and an aged rat model were used to confirm the effects of Scue. In vitro MTT assays and flow cytometry were used to assess the effects of Scue on cell viability and apoptosis, respectively. A Morris water maze was used to evaluate spatial learning and memory, and the levels of Aß deposition, superoxide dismutase, malondialdehyde, apoptosis, neuro-inflammatory factors and nuclear factor-κB (NF-κB) activation in hippocampal tissues in vivo were measured to determine the effect of Scue in AD. Scue may be protective, as it decreased the apoptosis of hippocampal cells in vitro, inhibited Aß-induced cognitive impairment, suppressed hippocampal neuro-inflammation and suppressed activation of NF-κB in vivo. Therefore, Scue may be a useful agent for the treatment of Aß-associated pathology in the central nervous system through inhibition of the protein kinase B/NF-κB signaling pathway and thus, future studies are required to investigate the efficacy of Scue in patients with AD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA