Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 15(8)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39202465

RESUMEN

Maize is a significant food and feed product, and abiotic stress significantly impacts its growth and development. Arabidopsis Toxicosa en Levadura (ATL), a member of the RING-H2 E3 subfamily, modulates various physiological processes and stress responses in Arabidopsis. However, the role of ATL in maize remains unexplored. In this study, we systematically identified the genes encoding ATL in the maize genome. The results showed that the maize ATL family consists of 77 members, all predicted to be located in the cell membrane and cytoplasm, with a highly conserved RING domain. Tissue-specific expression analysis revealed that the expression levels of ATL family genes were significantly different in different tissues. Examination of the abiotic stress data revealed that the expression levels of ATL genes fluctuated significantly under different stress conditions. To further understand the biological functions of maize ATL family genes under high-temperature stress, we studied the high-temperature phenotypes of the maize ZmATL family gene ZmATL10 and its homologous gene AtATL27 in Arabidopsis. The results showed that overexpression of the ZmATL10 and AtATL27 genes enhanced resistance to high-temperature stress.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Zea mays , Zea mays/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Arabidopsis/genética , Estrés Fisiológico/genética , Familia de Multigenes , Genoma de Planta/genética , Filogenia , Calor , Proteínas de Arabidopsis/genética , Respuesta al Choque Térmico/genética , Estudio de Asociación del Genoma Completo
2.
Sci Rep ; 14(1): 10791, 2024 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734751

RESUMEN

Sweet corn is highly susceptible to the deleterious effects of low temperatures during the initial stages of growth and development. Employing a 56K chip, high-throughput single-nucleotide polymorphism (SNP) sequencing was conducted on 100 sweet corn inbred lines. Subsequently, six germination indicators-germination rate, germination index, germination time, relative germination rate, relative germination index, and relative germination time-were utilized for genome-wide association analysis. Candidate genes were identified via comparative analysis of homologous genes in Arabidopsis and rice, and their functions were validated using quantitative real-time polymerase chain reaction (qRT-PCR). The results revealed 35,430 high-quality SNPs, 16 of which were significantly correlated. Within 50 kb upstream and downstream of the identified SNPs, 46 associated genes were identified, of which six were confirmed as candidate genes. Their expression patterns indicated that Zm11ΒHSDL5 and Zm2OGO likely play negative and positive regulatory roles, respectively, in the low-temperature germination of sweet corn. Thus, we determined that these two genes are responsible for regulating the low-temperature germination of sweet corn. This study contributes valuable theoretical support for improving sweet corn breeding and may aid in the creation of specific germplasm resources geared toward enhancing low-temperature tolerance in sweet corn.


Asunto(s)
Frío , Estudio de Asociación del Genoma Completo , Germinación , Polimorfismo de Nucleótido Simple , Zea mays , Germinación/genética , Zea mays/genética , Zea mays/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Sitios de Carácter Cuantitativo
3.
Biochem Biophys Res Commun ; 703: 149637, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38354464

RESUMEN

The normal development of pollen grains and the completion of double fertilization in embryos are crucial for both the sexual reproduction of angiosperms and grain production. Actin depolymerizing factor (ADF) regulates growth, development, and responses to biotic and abiotic stress by binding to actin in plants. In this study, the function of the ZmADF1 gene was validated through bioinformatic analysis, subcellular localization, overexpression in maize and Arabidopsis, and knockout via CRISPR/Cas9. The amino acid sequence of ZmADF1 exhibited high conservation and a similar tertiary structure to that of ADF homologs. Subcellular localization analysis revealed that ZmADF1 is localized mainly to the nucleus and cytoplasm. The ZmADF1 gene was specifically expressed in maize pollen, and overexpression of the ZmADF1 gene decreased the number of pollen grains in the anthers of transgenic Arabidopsis plants. The germination rate of pollen and the empty seed shell rate in the fruit pods of the overexpressing plants were significantly greater than those in the wild-type (WT) plants. In maize, the pollen viability of the knockout lines was significantly greater than that of both the WT and the overexpressing lines. Our results confirmed that the ZmADF1 gene was specifically expressed in pollen and negatively regulated pollen quantity, vigor, germination rate, and seed setting rate. This study provides insights into ADF gene function and possible pathways for improving high-yield maize breeding.


Asunto(s)
Arabidopsis , Destrina , Polen , Zea mays , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Destrina/genética , Destrina/metabolismo , Gelsolina/metabolismo , Regulación de la Expresión Génica de las Plantas , Polen/genética , Polen/crecimiento & desarrollo , Zea mays/metabolismo
4.
Food Chem (Oxf) ; 7: 100179, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37583676

RESUMEN

Sweet corn is perishable and have limited harvest duration and shelf life due to their quality deterioration. Reactive oxygen species (ROS) are one of the most predominant factors for maintaining quality of sweet corn during and after harvest. Brassinosteroids (BRs) can enhance the activity of antioxidant enzymes and decrease the ROS level in plants. In this study, we found that a bioactive BR (24-epibrassinolide, EBR) treatment before harvest markedly inhibited change of quality indicators (MDA content, weight loss rate, and soluble sugar content) during and after harvest. Further analysis revealed that EBR promoted the activity and transcriptions of antioxidant enzymes, maintaining lower ROS level in kernels. Meanwhile, exogenous EBR increased the expression level of genes controlling sucrose transport in sweet corn kernels. Bioinformatics and binding analysis identified that BR transcription factor ZmBES1/ZmBZR1-10 might potentially bind to and upregulate transcriptions of antioxidant enzyme genes including SOD and POD genes, and sucrose transport-related genes including SUT and SWEET genes. These results indicated that exogenous application of EBR ameliorates quality during and after harvest by improving the antioxidant capacity and photosynthetic assimilates accumulation rate of sweet corn, thus prolonging harvest duration and shelf life in sweet corn.

5.
Plants (Basel) ; 12(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36987060

RESUMEN

The primary parts of corn stalks are the leaves and the stems, which comprise the cortex and the pith. Corn has long been cultivated as an grain crops, and now it is a primary global source of sugar, ethanol, and biomass-generated energy. Even though increasing the sugar content in the stalk is an important breeding goal, progress has been modest in many breeding researchers. Accumulation is the gradual rise in quantity when new additions are made. The challenging characteristics of such sugar content in corn stalks are below the protein, bio-economy, and mechanical injury. Hence, in this research, plant water-content-enabled micro-Ribonucleic acids (PWC-miRNAs) were designed to increase the sugar content in corn stalks following an accumulation rule. High-throughput sequencing of the transcriptome, short RNAs, and coding RNAs was performed here; leaf and stem degradation from two early-maturing Corn genotypes revealed new information on miRNA-associated gene regulation in corn during the sucrose accumulation process. For sugar content in corn stalk, PWC-miRNAs were used to establish the application of the accumulation rule for data-processing monitoring throughout. Through simulation, management, and monitoring, the condition is accurately predicted, providing a new scientific and technological means to improve the efficiency of the construction of sugar content in corn stalks. The experimental analysis of PWC-miRNAs outperforms sugar content in terms of performance, accuracy, prediction ratio, and evaluation. This study aims to provide a framework for increasing the sugar content of corn stalk.

6.
Environ Sci Pollut Res Int ; 30(17): 49290-49300, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36773263

RESUMEN

To reduce the harmful effects of nicosulfuron on sweet corn, the physiological regulation mechanism of sweet corn detoxification was studied. This study analyzed the effects of nicosulfuron stress on the glyoxalase system, hormone content, and key gene expression of nicosulfuron-tolerant "HK301" and nicosulfuron-sensitive "HK320" sweet corn seedling sister lines. After spraying nicosulfuron, the methylglyoxal (MG) content in HK301 increased first and then decreased. Glyoxalase I (GlyI) and glyoxalase II (GlyII) activities, non-enzymatic glutathione (GSH), and the glutathione redox state glutathione/(glutathione + glutathione disulfide) (GSH/(GSH + GSSG)) showed a similar trend as the MG content. Abscisic acid (ABA), gibberellin (GA), and zeatin nucleoside (ZR) also increased first and then decreased, whereas the auxin (IAA) increased continuously. In HK301, all indices after spraying nicosulfuron were significantly greater than those of the control. In HK320, MG accumulation continued to increase after nicosulfuron spraying and GlyI and GlyII activities, and GSH first increased and then decreased after 1 day of stress. The indicators above were significantly greater than the control. The GSH/(GSH + GSSG) ratio showed a decreasing trend and was significantly smaller than the control. Furthermore, ABA and IAA continued to increase, and the GA and ZR first increased and then decreased. Compared with HK320, HK301 significantly upregulated the transcription levels of GlyI and GlyII genes in roots, stems, and leaves. Comprehensive analysis showed that sweet maize seedlings improved their herbicide resistance by changing the glyoxalase system and regulating endogenous hormones. The results provide a theoretical basis for further understanding the response mechanism of the glyoxalase system and the regulation characteristics of endogenous hormones in maize under nicosulfuron stress.


Asunto(s)
Plantones , Zea mays , Disulfuro de Glutatión/metabolismo , Glutatión/metabolismo , Hormonas/metabolismo
7.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36362278

RESUMEN

The stem and leaves of fresh corn plants can be used as green silage or can be converted to biofuels, and the stalk sugar content and yield directly determine the application value of fresh corn. To identify the genetic variations and candidate genes responsible for the related traits in fresh corn, the genome-wide scan and genome-wide association analysis (GWAS) were performed. A total of 32 selective regions containing 172 genes were detected between sweet and waxy corns. Using the stalk sugar content and seven other agronomic traits measured in four seasons over two years, the GWAS identified ninety-two significant single nucleotide polymorphisms (SNPs). Most importantly, seven SNPs associated with the stalk sugar content were detected across multiple environments, which could explain 13.68-17.82% of the phenotypic variation. Accessions differing in genotype for certain significant SNPs showed significant variation in the stalk sugar content and other agronomic traits, and the expression levels of six important candidate genes were significantly different between two materials with different stalk sugar content. The genetic variations and candidate genes provide valuable resources for future studies of the molecular mechanism of the stalk sugar content and establish the foundation for molecular marker-assisted breeding of fresh corn.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Zea mays/genética , Sitios de Carácter Cuantitativo , Azúcares , Fitomejoramiento , Fenotipo , Polimorfismo de Nucleótido Simple
8.
Plants (Basel) ; 11(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36235327

RESUMEN

The U-box E3 (PUB) family genes encode the E3 ubiquitin ligase enzyme, which determines substrate specific recognition during protein ubiquitination. They are widespread in plants and are critical for plant growth, development, and response to external stresses. However, there are few studies on the functional characteristic of PUB gene family in the important staple crop, maize (Zea mays L.). In this study, the PUB gene in maize was aimed to identify and classify through whole-genome screening. Phylogenetic tree, gene structure, conserved motif, chromosome location, gene duplication (GD), synteny, and cis-acting regulatory element of PUB member were analyzed. The expression profiles of ZmPUB gene family in maize during development and under abiotic stress and hormones treatment were analyzed by the RNA-seq data. A total of 79 PUB genes were identified in maize genome, and they were stratified into seven categories. There were 25 pairs of segmental duplications (SD) and 1 pair of tandem duplication (TD) identified in the maize PUB gene family. A close relationship was observed between the monocot plant maize and rice in PUB gene family. There were 94 kinds of cis-acting elements identified in the maize PUB gene family, which included 46 biotic- and abiotic-responsive elements, 19 hormone-responsive elements, 13 metabolic and growth-related elements. The expression profiles of maize PUB gene family showed characteristics of tissue specificity and response to abiotic stress and hormones treatment. These results provided an extensive overview of the maize PUB gene family.

9.
PeerJ ; 10: e13629, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35818359

RESUMEN

Micronutrients, including vitamins, minerals, and other bioactive compounds, have tremendous impacts on human health. Much progress has been made in improving the micronutrient content of inbred lines in various crops through biofortified breeding. However, biofortified breeding still falls short for the rapid generation of high-yielding hybrids rich in multiple micronutrients. Here, we bred multi-biofortified sweet corn hybrids efficiently through marker-assisted selection. Screening by molecular markers for vitamin E and folic acid, we obtained 15 inbred lines carrying favorable alleles (six for vitamin E, nine for folic acid, and three for both). Multiple biofortified corn hybrids were developed through crossing and genetic diversity analysis.


Asunto(s)
Biofortificación , Alimentos Fortificados , Glutamato Formimidoiltransferasa , Micronutrientes , Biofortificación/métodos , Ácido Fólico , Glutamato Formimidoiltransferasa/genética , Micronutrientes/genética , Fitomejoramiento/métodos , Verduras/genética , Vitamina E , Zea mays/genética
10.
Comput Intell Neurosci ; 2022: 2844563, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685152

RESUMEN

Corn has a high yield and is widely used. Therefore, developing corn production and accurately estimating corn biomass yield are of great significance to improving people's lives, developing rural economy and climate issues. In this paper, a 3-layer BP neural network model is constructed by using the LM algorithm as the training algorithm of the corn biomass BP network model. From the three aspects of elevation, slope, and aspect, combined with the BP neural network model of corn biomass, the spatial distribution of corn biomass in the study area is analyzed. The results showed that the average biomass per unit area of maize increased with the increase in altitude below 1000 m. There are relatively more human activities in low altitude areas, which are more active in forestry production. The best planting altitude of corn is 0 ∼ 1000 m. When the altitude is higher than 1000 m, the corn biomass gradually decreases. In terms of slope, if the slope is lower than 15°, the biomass of maize increases with the increase in slope. If the slope is lower than 15°, the biomass of maize decreases gradually with the increase in slope. The biomass of maize on sunny slope was higher than that on shady slope.


Asunto(s)
Suelo , Zea mays , Biomasa , China , Humanos , Redes Neurales de la Computación , Tecnología de Sensores Remotos
11.
Environ Sci Pollut Res Int ; 29(25): 37248-37265, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35032265

RESUMEN

Weed control in maize (Zea mays L.) crops is usually undertaken using the postemergence herbicide nicosulfuron. The toxicity of nicosulfuron on maize, especially sweet maize, has been widely reported. In order to examine the effect of nicosulfuron on seedling photosynthetic characteristics, chlorophyll fluorescence, reactive oxygen species production, antioxidant enzyme activities, and gene expressions on sweet maize, nicosulfuron-tolerant "HK310" and nicosulfuron-sensitive "HK320" were studied. All experiment samples were subjected to a water or 80 mg kg-1 of nicosulfuron treatment when sweet maize seedlings grow to the stage of four leaves. After treatment with nicosulfuron, results for HK301 were significantly higher than those for HK320 for net photosynthetic rate, transpiration rate, stomatal conductance, leaf maximum photochemical efficiency of PSII, photochemical quenching of chlorophyll fluorescence, and the electron transport rate. These results were contrary to nonphotochemical quenching and intercellular CO2 concentration. As exposure time increased, associated effects also increased. Both O2·- and H2O2 detoxification is modulated by antioxidant enzymes. Compared to HK301, SOD, POD, and CAT activities of HK320 were significantly reduced as exposure time increase. Compared to HK320, the gene expression for the majority of SOD genes, except for SOD2, increased due to inducement by nicosulfuron, and it significantly upregulated the gene expression of CAT in HK301. Results from this study indicate that plants can improve photosynthesis, scavenging capabilities of ROS, and protective mechanisms to alleviate phytotoxic effect of nicosulfuron. Future research is needed to further elucidate the important role antioxidant systems and gene regulation play in herbicide detoxification in sweet maize.


Asunto(s)
Herbicidas , Zea mays , Antioxidantes/metabolismo , Clorofila/metabolismo , Expresión Génica , Herbicidas/metabolismo , Peróxido de Hidrógeno/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Piridinas , Plantones , Compuestos de Sulfonilurea , Superóxido Dismutasa/metabolismo , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...