RESUMEN
OBJECTIVES: To analyse annual trends of the under-five mortality rate (U5MR) and main cause-specific U5MR in China from 1996 to 2020 and to assess the potential correlation of the healthcare system and health expenditure with the U5MR in China. DESIGN: A retrospective observational study using national data from 1996 to 2020. Joinpoint regression was employed to model U5MR trends and Pearson correlation analysis was conducted to examine the relationship between healthcare system factors, health expenditure and U5MR. SETTING: Nationwide study covering both rural and urban populations across China over a 25-year period. RESULTS: The U5MR in China experienced a three-stage decline from 1996 to 2020 with an average annual percentage rate change (AAPC) of -7.27 (p<0.001). The AAPC of the rural U5MR (-7.07, p<0.001) was higher than that in urban areas (-5.57, p<0.001). Among the five main causes, the decrease in pneumonia-caused U5MR was the fastest while the decreases in congenital heart disease and accidental asphyxia were relatively slow. The rates of hospital delivery (r=-0.981, p<0.001), neonatal visits (r=-0.848, p<0.001) and systematic health management (r=-0.893, p<0.001) correlated negatively with U5MR. The proportion of government health expenditure in the total health expenditure (THE) correlated negatively with the national U5MR (r=-0.892, p<0.001) while the proportion of out-of-pocket health expenditure in THE correlated positively (r=0.902, p<0.001). CONCLUSION: China made significant advances in reducing U5MR from 1996 to 2020. The rural-urban gap in U5MR has narrowed, though rural areas remain a key concern. To further reduce U5MR, China should focus on rural areas, pay more attention to congenital heart disease and accidental asphyxia, further improve its health policies, and continue to increase the government health expenditure.
Asunto(s)
Mortalidad del Niño , Gastos en Salud , Mortalidad Infantil , Humanos , China/epidemiología , Lactante , Estudios Retrospectivos , Mortalidad del Niño/tendencias , Preescolar , Gastos en Salud/tendencias , Gastos en Salud/estadística & datos numéricos , Mortalidad Infantil/tendencias , Recién Nacido , Población Rural/estadística & datos numéricos , Femenino , Análisis de Regresión , Masculino , Neumonía/mortalidad , Neumonía/epidemiología , Población Urbana/estadística & datos numéricos , Atención a la SaludRESUMEN
Background: Bilirubin has been widely reported to be a protective factor against diabetic kidney disease (DKD) in Asian populations. However, few large-sample analyses have been conducted in American populations. This study aimed to investigate the association between serum total bilirubin (STB) level and DKD in a US diabetic cohort. Methods: This cross-sectional study enrolled participants from the National Health and Nutrition Examination Survey (NHANES) 2003-2018. Univariate and multivariate logistic regression analyses were performed to assess the association between STB level and DKD. Three models were conducted to control the potential confounding factors. Subgroup analysis was carried out for further validation. Results: Among the 5,355 participants, the median age [interquartile range (IQR)] was 62 [52-71] years; 2,836 (52.96%) were male, and 1,576 (29.43%) were diagnosed with DKD. In the entire cohort, no significant association between STB level and DKD was observed in any logistic regression models (p > 0.05). Subgroup analysis revealed that, in U.S. diabetic males, STB levels > 11.98 µmol/L were associated with a nearly 30% lower risk of DKD than STB levels ≤ 8.55 µmol/L. Additionally, a moderate STB level (8.56-11.98 µmol/L) was found associated with a nearly 25% lower risk of DKD in U.S. diabetic patients over 65 years old. Conclusion: The association of STB level with DKD may depict differences across diverse populations, among which the impact of race, sex, and age requires thorough consideration and relevant inferences should be interpreted cautiously.
Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Masculino , Estados Unidos/epidemiología , Anciano , Femenino , Nefropatías Diabéticas/epidemiología , Nefropatías Diabéticas/etiología , Encuestas Nutricionales , Estudios Transversales , Bilirrubina , Modelos LogísticosRESUMEN
BACKGROUND: Complement overactivation is a major driver of lupus nephritis (LN). Impaired interactions of C-reactive protein (CRP) with complement factor H (CFH) have been shown as a pathogenic mechanism that contributes to the overactivation of complement in LN. However, genetic variations of neither CRP nor CFH show consistent influences on the risk of LN. AIM: To examine whether genetic variations of CRP and CFH in combination can improve the risk stratification in Chinese population. METHODS: We genotyped six CRP single nucleotide polymorphisms (SNPs) (rs1205, rs3093062, rs2794521, rs1800947, rs3093077, and rs1130864) and three CFH SNPs (rs482934, rs1061170, and rs1061147) in 270 LN patients and 303 healthy subjects. RESULTS: No linkage was found among CRP and CFH SNPs, indicating lack of genetic interactions between the two genes. Moreover, CRP and CFH SNPs, neither individually nor in combination, are associated with the risk or clinical manifestations of LN. Given the unambiguous pathogenic roles of the two genes. CONCLUSION: These findings suggest that the biological effects of most genetic variations of CRP and CFH on their expressions or activities are not sufficient to influence the disease course of LN.
RESUMEN
C-reactive protein (CRP) is a highly conserved pentraxin with pattern recognition receptor-like activities. However, despite being used widely as a clinical marker of inflammation, the in vivo functions of CRP and its roles in health and disease remain largely unestablished. This is, to certain extent, due to the drastically different expression patterns of CRP in mice and rats, raising concerns about whether the functions of CRP are essential and conserved across species and how these model animals should be manipulated to examine the in vivo actions of human CRP. In this review, we discuss recent advances highlighting the essential and conserved functions of CRP across species, and propose that appropriately designed animal models can be used to understand the origin-, conformation-, and localization-dependent actions of human CRP in vivo. The improved model design will contribute to establishing the pathophysiological roles of CRP and facilitate the development of novel CRP-targeting strategies.
Asunto(s)
Proteína C-Reactiva , Inflamación , Humanos , Animales , Ratones , Ratas , Modelos AnimalesRESUMEN
Human, rat, and mouse C-reactive protein (CRP) possess distinct expression patterns, but have similar conformations and conserved in vivo functions. We have previously demonstrated that this level-function mismatch is delicately tuned by the hidden activities of unfolded CRP. The cholesterol-binding sequence (CBS; a.a. 35-47) is a major functional motif exposed on monomeric CRP, which is the unfolded and activated conformation of CRP. We replaced the CBS of rat CRP with that of either mouse or human CRP, yielding two grafting mutants with unaffected pentameric assembly. However, these mutants exhibited altered cellular foldability and conformational activation efficiency that matched those of the CRP that provided the grafted CBS. These results indicate that CBS is a critical regulatory motif, whose variation maintains the pentameric assembly of CRP but derives distinct cellular foldabilities and conformational activation efficiencies, therefore helping to ensure that CRPs with various expression patterns exhibit overall conserved functions.
Asunto(s)
Proteína C-Reactiva , Colesterol , Humanos , Ratones , Ratas , Animales , Proteína C-Reactiva/química , Conformación ProteicaRESUMEN
BACKGROUND: Laparoscopic partial nephrectomy has been widely used in renal cell carcinoma treatment. The efficacy of GreenLight laser on Laparoscopic partial nephrectomy is still unknown. AIM: To present the first series of laparoscopic partial nephrectomy (LPN) by GreenLight laser enucleation without renal artery clamping. Due to the excellent coagulation and hemostatic properties of the laser, laser-assisted LPN (LLPN) makes it possible to perform a "zero ischemia" resection. METHODS: Fifteen patients with T1a exogenous renal tumors who received high-power GreenLight laser non-ischemic LPN in our hospital were retrospectively analyzed. All clinical information, surgical and post-operative data, complications, pathological and functional outcomes were analyzed. RESULTS: Surgery was successfully completed in all patients, and no open or radical nephrectomy was performed. The renal artery was not clamped, leading to no ischemic time. No blood transfusions were required, the average hemoglobin level ranged from 96.0 to 132.0 g/L and no postoperative complications occurred. The mean operation time was 104.3 ± 8.2 min. The postoperative removal of negative pressure drainage time ranged from 5.0 to 7.0 d, and the mean postoperative hospital stay was 6.5 ± 0.7 d. No serious complications occurred. Postoperative pathological results showed clear cell carcinoma in 12 patients, papillary renal cell carcinoma in 2 patients, and hamartoma in 1 patient. The mean creatinine level was 75.0 ± 0.8 µmol/L (range 61.0-90.4 µmol/L) at 1 mo after surgery, and there were no statistically significant differences compared with pre-operation (P > 0.05). The glomerular filtration rate ranged from 45.1 to 60.8 mL/min, with an average of 54.0 ± 5.0 mL/min, and these levels were not significantly different from those before surgery (P > 0.05). CONCLUSION: GreenLight laser has extraordinary cutting and sealing advantages when used for small renal tumors (exogenous tumors of stage T1a) during LPN. However, use of this technique can lead to the generation of excessive smoke.
RESUMEN
Biophysical models suggest a dominant role of structural over functional constraints in shaping protein evolution. Selection on structural constraints is linked closely to expression levels of proteins, which together with structure-associated activities determine in vivo functions of proteins. Here we show that despite the up to two orders of magnitude differences in levels of C-reactive protein (CRP) in distinct species, the in vivo functions of CRP are paradoxically conserved. Such a pronounced level-function mismatch cannot be explained by activities associated with the conserved native structure, but is coupled to hidden activities associated with the unfolded, activated conformation. This is not the result of selection on structural constraints like foldability and stability, but is achieved by folding determinants-mediated functional selection that keeps a confined carrier structure to pass the stringent eukaryotic quality control on secretion. Further analysis suggests a folding threshold model which may partly explain the mismatch between the vast sequence space and the limited structure space of proteins.
Asunto(s)
Proteína C-Reactiva , Pliegue de Proteína , Control de CalidadRESUMEN
BACKGROUND AND AIMS: C-reactive protein (CRP) is a hepatocyte-produced marker of inflammation yet with undefined function in liver injury. We aimed to examine the role of CRP in acetaminophen-induced liver injury (AILI). METHODS: The effects of CRP in AILI were investigated using CRP knockout mice and rats combined with human CRP rescue. The mechanisms of CRP action were investigated in vitro and in mice with Fcγ receptor 2B knockout, C3 knockout, or hepatic expression of CRP mutants defective in complement interaction. The therapeutic potential of CRP was investigated by intraperitoneal administration at 2 or 6 hours post-AILI induction in wild-type mice. RESULTS: CRP knockout exacerbated AILI in mice and rats, which could be rescued by genetic knock-in, adeno-associated virus-mediated hepatic expression or direct administration of human CRP. Mechanistically, CRP does not act via its cellular receptor Fcγ receptor 2B to inhibit the early phase injury to hepatocytes induced by acetaminophen; instead, CRP acts via factor H to inhibit complement overactivation on already injured hepatocytes, thereby suppressing the late phase amplification of inflammation likely mediated by C3a-dependent actions of neutrophils. Importantly, CRP treatment effectively alleviated AILI with a significantly extended therapeutic time window than that of N-acetyl cysteine. CONCLUSION: Our results thus identify CRP as a crucial checkpoint that limits destructive activation of complement in acute liver injury, and we argue that long-term suppression of CRP expression or function might increase the susceptibility to AILI.
Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Acetaminofén/efectos adversos , Animales , Proteína C-Reactiva , Ratones , Ratones Endogámicos C57BL , RatasRESUMEN
C-reactive protein (CRP) is a circulating marker of inflammation yet with ill-defined biological functions. This is partly due to the uncharacterized activities of endogenous CRP in mice, the major animal model used to define protein function. The hurdles for purification and characterization of mouse CRP are its low circulating levels and the lack of specific antibodies. To clear these hurdles, here we developed an efficient expression system by constructing recombinant Pichia pastoris cells for secretion of native conformation mouse CRP. The recombinant expression of mouse CRP in Escherichia coli failed to yield sufficient amount of native protein, reflecting the importance of post-translational modification of glycosylation in aiding proper folding. By contrast, sufficient amount of native mouse CRP was successfully purified from P. pastoris. Preliminary purification was performed by Nickel Chelating Sepharose Fast-Flow affinity chromatography with 6 × His tags attached to the protein. Subsequently, p-Aminophenyl Phosphoryl Choline Agarose resin affinity chromatography was used for tandem purification. The purified mouse CRP showed native pentamer and capabilities of PC binding. Moreover, the 6 × His tag provides a convenient tool for detecting the interactions of mouse CRP with ligands.
Asunto(s)
Níquel , Pichia , Animales , Proteína C-Reactiva/metabolismo , Colina , Cromatografía de Afinidad/métodos , Escherichia coli/genética , Ligandos , Ratones , Pichia/química , Pichia/genética , Pichia/metabolismo , Saccharomycetales , Sefarosa/metabolismoRESUMEN
C-reactive protein (CRP) is an acute phase reactant secreted by hepatocytes as a pentamer. The structure formation of pentameric CRP has been demonstrated to proceed in a stepwise manner in live cells. Here, we further dissect the sequence determinants that underlie the key steps in cellular folding and assembly of CRP. The initial folding of CRP subunits depends on a leading sequence with a conserved dipeptide that licenses the formation of the hydrophobic core. This drives the bonding of the intra-subunit disulfide requiring a favorable niche largely conferred by a single residue within the C-terminal helix. A conserved salt bridge then mediates the assembly of folded subunits into pentamer. The pentameric assembly harbors a pronounced plasticity in inter-subunit interactions, which may form the basis for a reversible activation of CRP in inflammation. These results provide insights into how sequence constraints are evolved to dictate structure and function of CRP.
Asunto(s)
Proteína C-Reactiva/química , Proteína C-Reactiva/metabolismo , Humanos , Conformación Proteica , Pliegue de ProteínaRESUMEN
Amyloid-ß peptides (Aßs) are generated in a membrane-embedded state by sequential processing of amyloid precursor protein (APP). Although shedding of membrane-embedded Aß is essential for its secretion and neurotoxicity, the mechanism behind shedding regulation is not fully elucidated. Thus, we devised a Langmuir film balance-based assay to uncover this mechanism. We found that Aß shedding was enhanced under acidic pH conditions and in lipid compositions resembling raft microdomains, which are directly related to the microenvironment of Aß generation. Furthermore, Aß shedding efficiency was determined by the length of the C-terminal membrane-spanning region, whereas pH responsiveness appears to depend on the N-terminal ectodomain. These findings indicate that Aß shedding may be directly coupled to its generation and represents an unrecognized control mechanism regulating the fate of membrane-embedded products of APP processing.
Asunto(s)
Péptidos beta-Amiloides/química , Micropartículas Derivadas de Células/metabolismo , Endosomas/química , Péptidos beta-Amiloides/metabolismo , Animales , Micropartículas Derivadas de Células/química , Dicroismo Circular , Endosomas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Microdominios de Membrana/metabolismo , Dominios ProteicosRESUMEN
BACKGROUND: Prostate cancer (PCa) is one of the most common malignancies and a major leading cause of cancer-related deaths in males. And it is necessary to explore new molecular targets to enhance diagnosis and treatment level of the PCa. Serine/threonine protein phosphatase 5 (PPP5C) is a vital molecule that Involve in complex cell physiological activity. PURPOSE: The objective of this study was to detecte the expression level of PPP5C in the tissue of prostate cancer patients and further discussed the PPP5C biological function and mechanisms on the PCa. METHODS: The expression level of PPP5C was analyzed by immunohistochemistry and ONCOM-INE datasets. Lentivirus-mediated short hairpin RNA (shRNA) was constructed to silence the expression of PPP5C in prostate cancer cell. Cell viability and proliferation were measured using MTT and colony formation, and the cell cycle and apoptosis was analyszed by flow cytometry. The changes of downstream protein level and protein phosphorylation level were detected by western blot. RESULTS: PPP5C was highly expressed in PCa tissue as analyzed by immunohistochemistry and ONCOMINE datasets. PPP5C Knockdown inhibited cell proliferation and colony formation in PCa cells. Flow cytometry analysis showed that DU145, PC3 and 22RV1 PCa cells deprived of PPP5C were arrested in G0/G1 phase and became apoptotic. Western blot analysis indicated that PPP5C knockdown could promote JNK and ERK phosphorylation. CONCLUSION: Our study indicated that the PPP5C may become a new potential diagnostic biomarker and therapeutic target for the PCa.
RESUMEN
The conformational conversion of pentameric C-reactive protein (pCRP) to monomeric CRP (mCRP) has been shown to play important roles in the action of CRP in inflammation regulation. In vivo studies revealed the origin of mCRP and provided insights into how pCRP dissociation affected its functions. However, the interplay and exact bioactivities of CRP isoforms still remain uncertain due to the rapid conformational conversion and complex milieu in vivo. Herein, we have used surface-immobilization of pCRP to generate a preservable intermediate with dual antigenicity expression of both pCRP and mCRP. The intermediate has been further shown to exhibit modified bioactivities, such as a high affinity with solution-phase pCRP and an enhanced capacity of complement interaction. These results thus not only provide the conformational conversion details of CRP, but also propose a simple way in vitro to study how the functions of CRP are tuned by distinct isoforms.
Asunto(s)
Proteína C-Reactiva/química , Proteína C-Reactiva/metabolismo , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/metabolismo , Proteína C-Reactiva/genética , Proteína C-Reactiva/inmunología , Regulación de la Expresión Génica , Humanos , Proteínas Inmovilizadas/genética , Proteínas Inmovilizadas/inmunología , Inflamación/metabolismo , Modelos Moleculares , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Estructura Cuaternaria de ProteínaRESUMEN
Prostate cancer (PCa) is one of the most commonly diagnosed urological malignancies. However, there are limited therapies for PCa patients who develop biochemical recurrence after androgen deprivation therapy (ADT). In the present study, we investigated the therapeutic efficacy and mechanism of α-Viniferin (KCV), an oligostilbene of trimeric resveratrol, against human PCa cells and found that it markedly inhibited the proliferation of LNCaP, DU145, and PC-3 cancer cells in a time- and dose-dependent manner, and had a strong cytotoxicity in non-androgen-dependent PCa cells. In addition, KCV inhibited AR downstream expression in LNCaP cells, and inhibited activation of GR signaling pathway in DU145 and PC-3. Further investigation indicated that KCV could induce cancer cell apoptosis through AMPK-mediated activation of autophagy, and inhibited GR expression in castration-resistant prostate cancer(CRPC). These findings suggest that KCV may prove to be a novel and effective therapeutic agent for the treatment of CRPC.
Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Benzofuranos/farmacología , Proliferación Celular/efectos de los fármacos , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores de Glucocorticoides/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis/genética , Autofagia/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Fosforilación/efectos de los fármacos , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Receptores de Glucocorticoides/genética , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
The causal relationship between conformational folding and disulfide bonding in protein oxidative folding remains incompletely defined. Here we show a stage-dependent interplay between the two events in oxidative folding of C-reactive protein (CRP) in live cells. CRP is composed of five identical subunits, which first fold spontaneously to a near-native core with a correctly positioned C-terminal helix. This process drives the formation of the intra-subunit disulfide bond between Cys36 and Cys97. The second stage of subunit folding, however, is a non-spontaneous process with extensive restructuring driven instead by the intra-subunit disulfide bond and guided by calcium binding-mediated anchoring. With the folded subunits, pentamer assembly ensues. Our results argue that folding spontaneity is the major determinant that dictates which event acts as the driver. The stepwise folding pathway of CRP further suggests that one major route might be selected out of the many in theory for efficient folding in the cellular environment.
Asunto(s)
Proteína C-Reactiva/química , Disulfuros/química , Conformación Proteica , Pliegue de Proteína , Humanos , Modelos Moleculares , Oxidación-ReducciónRESUMEN
PDZ and LIM domain 5 (PDLIM5) is a cytoskeleton-associated protein and has been shown to bind to a variety of proteins through its specific domain, thereby acting to regulate cell migration and tumor progression. Here, we found that PDLIM5 was abnormally upregulated in prostate cancer (PCa) tissues as compared with that in normal prostate tissue. ONCOMINE microarray data mining showed that PDLIM5 was closely correlated with the prognosis of PCa in terms of Gleason score, tumor metastasis and biochemical recurrence. Lentivirus-mediated short hairpin RNA (shRNA) knockdown of PDLIM5 inhibited cell proliferation and colony formation, arrested hormone independent PCa cells DU145 and PC-3 in G2/M phase, and induced apoptosis. Meanwhile, silencing PDLIM5 inhibited migration and invasion of tumor cells by reversing the mesenchymal phenotype and a similar result was confirmed in a xenograft nude mouse model. Finally, we found PDLIM5 plays a crucial role in regulating malignant tumor cell proliferation, invasion and migration by binding to AMPK and affecting its activation and degradation, and may therefore prove to be a potential oncogenic gene in the development and progression of PCa.
RESUMEN
PURPOSE: Prostate cancer is one of the leading causes of cancer death for male. In the present study, we applied an integrated bioinformatics approach to provide a novel perspective and identified some hub genes of prostate cancer. METHOD: Microarray data of fifty-nine prostate cancer were downloaded from Gene Expression Omnibus. Gene Ontology and pathway analysis were applied for differentially expressed genes between high and low grade prostate cancer. Weighted gene coexpression network analysis was applied to construct gene network and classify genes into different modules. The most related module to high grade prostate cancer was identified and hub genes in the module were revealed. Ingenuity pathway analysis was applied to check the chosen module's relationship to high grade prostate cancer. Hub gene's expression profile was verified with clinical samples and a dataset from The Cancer Genome Atlas project. RESULT: 3193 differentially expressed genes were filtered and gene ontology and pathway analysis revealed some cancer- and sex hormone-related results. Weighted gene coexpression network was constructed and genes were classified into six modules. The red module was selected and ingenuity pathway analysis confirmed its relationship with high grade prostate cancer. Hub genes were identified and their expression profile was also confirmed. CONCLUSION: The present study applied integrate bioinformatics approaches to generate a holistic view of high grade prostate cancer and identified hub genes could serve as prognosis markers and potential treatment targets.
Asunto(s)
Redes Reguladoras de Genes , Neoplasias de la Próstata/genética , Biología Computacional , Regulación hacia Abajo , Humanos , Masculino , Clasificación del Tumor , Pronóstico , Neoplasias de la Próstata/patología , Transcriptoma , Regulación hacia ArribaRESUMEN
Serine/threonine protein phosphatase 5 (PPP5C) is a member of the protein serine/threonine phosphatase family and has been shown to participate in multiple signaling cascades and tumor progression. We found that PPP5C was highly expressed in bladder cancer tissues compared to normal urothelial tissues, and positively correlated to tumor stages through ONCOMINE microarray data mining. Knockdown of PPP5C via a lentivirus-mediated short hairpin RNA (shRNA) markedly inhibited cell proliferation and colony formation. Flow cytometric analysis showed that PPP5C-deficient T24 and BT5637 bladder cancer cells were arrested in G0/G1 phase and induced apoptosis. In addition, tumor growth was inhibited in vivo in a xenograft nude mouse model. Further studies indicated that knockdown of PPP5C downregulated c-myc and CDK4, whereas upregulated p27, BAD and Beclin1. These results suggest that PPP5C is associated with bladder cancer (BCa) and plays an oncogenic role in the development and progression of bladder cancer.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas Nucleares/antagonistas & inhibidores , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Neoplasias de la Vejiga Urinaria/prevención & control , Animales , Apoptosis , Carcinogénesis , Ciclo Celular , Proliferación Celular , Femenino , Estudios de Seguimiento , Humanos , Lentivirus/genética , Masculino , Ratones , Persona de Mediana Edad , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Pronóstico , ARN Interferente Pequeño/genética , Transducción de Señal , Tasa de Supervivencia , Células Tumorales Cultivadas , Neoplasias de la Vejiga Urinaria/enzimología , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Phorbol esters are the main toxins in Jatropha curcas seed and oil. The aim of this study was to assess the acute toxicity of phorbol esters given by intragastric administration and to determine the LD50 for Swiss Hauschka mice. The LD50 and 95% confidence limits for male mice were 27.34 mg/kg body mass and 24.90-29.89 mg/kg body mass; and the LD5 and LD95 were 18.87 and 39.62 mg/kg body mass, respectively. The regression equations between the probits of mortalities (Y) and the log of doses (D) was Y=-9.67+10.21 log (D). Histopathological studies on the organs from the dead mice showed: (1) no significant abnormal changes in the organs at the lowest dose (21.26 mg/kg body mass) studied, (2) prominent lesions mainly found in lung and kidney, with diffused haemorrhages in lung, and glomerular sclerosis and atrophy in kidney at doses > or = 32.40 mg/kg body mass, and (3) multiple abruption of cardiac muscle fibres and anachromasis of cortical neurons at the highest dose of 36.00 mg/kg body mass. The results obtained would aid in developing safety measures for the Jatropha based biofuel industry and in exploiting the pharmaceutical and agricultural applications of phorbol esters.