Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Food Sci Nutr ; 12(10): 7306-7315, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39479673

RESUMEN

Keemun black tea (KBT) is a luxurious traditional tea in China that has been commonly consumed because of its superior aroma and special taste. However, the risks remain unknown when KBT is used concomitantly with other drugs or food products. Therefore, we aimed to explore the effect of the tea polyphenols from KBT on the protein and mRNA levels of CYP450 and related mechanisms. The extraction of tea polyphenols from KBT and the content and component analysis of polyphenols were performed. A total of 24 female C57BL/6J mice were given tea polyphenols (0, 75, 150, 300 mg/kg) for 7 days, respectively. Liver tissues were collected 2 h after the last administration. The expression of Cyp3a11, Cyp1a2, Cyp2e1, Cyp2c37, and PXR mRNA was detected by real-time PCR, and the expression of Cyp3a11, Cyp1a2, Cyp2e1, Cyp2c37, and PXR protein was detected by Western blotting. A transient co-transfection reporter gene assay on HepG2 cells was also used to verify the role of PXR in regulating CYP3A4 expression. Our results showed that tea polyphenols from KBT significantly induced the expression of CYP 3A11 and PXR in general, inhibited the expression of Cyp1a2 and Cyp2e1 in general, and significantly inhibited the mRNA expression of Cyp2c37 but induced its protein expression. The reporter gene-transfected cells demonstrated that tea polyphenols could enhance the PXR-mediated transactivation of the CYP3A4 promoter via rifampicin-induction. Meanwhile, tea polyphenols could significantly accelerate CYP3A11/3A4 expression by activating the PXR-CYP3A4 pathway. In conclusion, KBT polyphenols could significantly affect the expression of various subtypes of the Cyp450 enzyme in mice livers via the PXR-CYP450 pathway, suggesting that metabolism-based interactions can occur when they are used in combination with medicines.

2.
Heliyon ; 10(16): e35773, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39220950

RESUMEN

Land subsidence caused by excessive groundwater withdrawal has become a global hazard, which demands further researches and the potential measures to control. Using the FlowTrac Ⅱ consolidation test system, six compression tests were designed to investigate the stress state and stress paths of sand within confined aquifers under conditions of withdrawal and recharging. The deformation characteristics of aquifer sand were studied under different withdrawal-recharging patterns. During pumping and recharge processes, sand deformation responses were observed to lag behind changes in applied stress. The characteristics of this hysteresis effect on deformation were summarized. The alternating phenomenon of rebound and compression of sand deformation under the recharging process is analyzed. When the recharging effect was relatively small than withdrawing effect under the stable withdrawal-recharging pattern, the compression deformation was observed in the recharging process. The research results provide a rational explanation for the continuous compression deformation of the aquifer during groundwater level recovery and offer experimental evidence for the rational design of artificial groundwater recharge in engineering construction.

3.
J Cancer ; 15(15): 4879-4892, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39132147

RESUMEN

Background: Tryptophan (Trp) metabolism is closely related to tumor immunity, and its disorder can cause an immunosuppressive microenvironment, promoting the occurrence and development of hepatocellular carcinoma (HCC). The aim of this study is to explore and validate the independent prognostic genes in patients suffered from HCC. Methods: The transcriptome data of GSE87630 from GEO database were downloaded to analyze differentially expressed genes (DECs) which were intersected with the gene sets of Trp metabolism from MsigDB database. Univariate/multivariate COX regression was performed to identify the genes with independent prognostic significance. TCGA, GTEx, UALCAN, and GEPIA2 databases were applied to analyze DEGs for prognosis. RNA seq data of HCC from TCGA database were collected for Lasso regression analysis. The ssGSEA algorithm was used to perform the analysis of TCGA data. The effects of the candidate differential gene on HCC cells proliferation and migration were evaluated using EdU immunofluorescence and transwell assays. Results: Trp metabolism-related DECs for HCCs were obtained, including MAOB, CYP1A2, KYNU, CYP2E1, ALDH2, CYP2C18, TDO2, AOX1, CYP3A4 and INMT. Moreover, multivariate COX regression results showed that ALDH2 can serve as an independent prognostic molecule and its transcriptional and translational levels were significantly reduced in the tumor tissues. The low expression of ALDH2 was associated with poor prognosis. Overexpression of ALDH2 dramatically reduced the HCC cells proliferation and migration. Conclusion: ALDH2 is associated with Trp metabolism and its downregulation in HCC has a potential value on prognosis. Overexpression of ALDH2 can reduce the proliferation and migration of HCC cells.

4.
World J Gastrointest Oncol ; 15(8): 1424-1435, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37663945

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is a major global health burden. The current diagnostic tests have shortcomings of being invasive and low accuracy. AIM: To explore the combination of intestinal microbiome composition and multi-target stool DNA (MT-sDNA) test in the diagnosis of CRC. METHODS: We assessed the performance of the MT-sDNA test based on a hospital clinical trial. The intestinal microbiota was tested using 16S rRNA gene sequencing. This case-control study enrolled 54 CRC patients and 51 healthy controls. We identified biomarkers of bacterial structure, analyzed the relationship between different tumor markers and the relative abundance of related flora components, and distinguished CRC patients from healthy subjects by the linear discriminant analysis effect size, redundancy analysis, and random forest analysis. RESULTS: MT-sDNA was associated with Bacteroides. MT-sDNA and carcinoembryonic antigen (CEA) were positively correlated with the existence of Parabacteroides, and alpha-fetoprotein (AFP) was positively associated with Faecalibacterium and Megamonas. In the random forest model, the existence of Streptococcus, Escherichia, Chitinophaga, Parasutterella, Lachnospira, and Romboutsia can distinguish CRC from health controls. The diagnostic accuracy of MT-sDNA combined with the six genera and CEA in the diagnosis of CRC was 97.1%, with a sensitivity and specificity of 98.1% and 92.3%, respectively. CONCLUSION: There is a positive correlation of MT-sDNA, CEA, and AFP with intestinal microbiome. Eight biomarkers including six genera of gut microbiota, MT-sDNA, and CEA showed a prominent sensitivity and specificity for CRC prediction, which could be used as a non-invasive method for improving the diagnostic accuracy for this malignancy.

5.
Eur J Pharm Sci ; 189: 106561, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37562549

RESUMEN

Delivering traditional DNA-damaging anticancer drugs into mitochondria to damage mitochondria is a promising chemotherapy strategy. The impermeability of this mitochondrial inner membrane, however, impedes the delivery of drug molecules that could impact other important biological roles of mitochondria. Herein, the prodrug camptothecin (CPT)-triphenylphosphine (TPP) modified with hyaluronic acid (HA) via electrostatic adsorption (HA/CPT-TPP, HCT) was used to mediate the mitochondrial accumulation of CPT. These nanoparticles (NPs) showed enhanced drug accumulation in cancer cells through tumor targeting. HCT entered acidic lysosomes through endosomal transport, HA was degraded by hyaluronidase (HAase) in acidic lysosomes, and the positively charged CPT-TPP was exposed and accumulated fully in the mitochondria. Subsequently, CPT-TPP significantly disrupted the mitochondrial structure and damaged mitochondrial function, leading to increased reactive oxygen species (ROS) levels and energy depletion. Finally, HCT enhanced lung cancer cell apoptosis via the activation of caspase-3 and caspase-9. Furthermore, greatly increased tumor growth inhibition was observed in nude mice bearing A549 xenograft tumors after the administration of HCT via tail injection. This study demonstrated that the mitochondria-targeted delivery of CPT may be a promising antitumor therapeutic strategy.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Nanopartículas , Animales , Ratones , Humanos , Ratones Desnudos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Mitocondrias/metabolismo , Nanopartículas/química , Camptotecina/metabolismo , Sistemas de Liberación de Medicamentos , Línea Celular Tumoral
6.
Nanomaterials (Basel) ; 13(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36903671

RESUMEN

With the increase in heat power density in modern integrating electronics, thermal interface materials (TIM) that can efficiently fill the gaps between the heat source and heat sinks and enhance heat dissipation are urgently needed owing to their high thermal conductivity and excellent mechanical durability. Among all the emerged TIMs, graphene-based TIMs have attracted increasing attention because of the ultrahigh intrinsic thermal conductivity of graphene nanosheets. Despite extensive efforts, developing high-performance graphene-based papers with high through-plane thermal conductivity remains challenging despite their high in-plane thermal conductivity. In this study, a novel strategy for enhancing the through-plane thermal conductivity of graphene papers by in situ depositing AgNWs on graphene sheets (IGAP) was proposed, which could boost the through-plane thermal conductivity of the graphene paper up to 7.48 W m-1 K-1 under packaging conditions. In the TIM performance test under actual and simulated operating conditions, our IGAP exhibits strongly enhanced heat dissipation performance compared to the commercial thermal pads. We envision that our IGAP as a TIM has great potential for boosting the development of next-generation integrating circuit electronics.

7.
Adv Mater ; 35(31): e2211100, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36929098

RESUMEN

The rapid development of highly integrated microelectronic devices causes urgent demands for advanced thermally conductive adhesives (TCAs) to solve the interfacial heat-transfer issue. Due to their natural 2D structure and isotropic thermal conductivity, metal nanoflakes are promising fillers blended with polymer to develop high-performance TCAs. However, achieving corresponding TCAs with thermal conductivity over 10 W m-1 K-1 at filler content below 30 vol% remains challenging so far. This longstanding bottleneck is mainly attributed to the fact that most current metal nanoflakes are prepared by "bottom-up" processes (e.g., solution-based chemical synthesis) and inevitably contain lattice defects or impurities, resulting in lower intrinsic thermal conductivities, only 20-65% of the theoretical value. Here, a "top-down" strategy by splitting highly purified Ag foil with nanoscale thickness is adopted to prepare 2D Ag nanoflakes with an intrinsic thermal conductivity of 398.2 W m-1 K-1 , reaching 93% of the theoretical value. After directly blending with epoxy, the resultant Ag/epoxy exhibits a thermal conductivity of 15.1 W m-1 K-1 at low filler content of 18.6 vol%. Additionally, in practical microelectronic cooling performance evaluations, the interfacial heat-transfer efficiency of the Ag/epoxy achieves ≈1.4 times that of the state-of-the-art commercial TCA.

8.
Life Sci ; 318: 121501, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36801213

RESUMEN

AIMS: Taurohyodeoxycholic acid (THDCA), a natural 6α-hydroxylated bile acid, exhibits intestinal anti-inflammatory effects. This study aimed to explore the efficacy of THDCA on ulcerative colitis and to reveal its mechanisms of action. MAIN METHODS: Colitis was induced by intrarectal administration of trinitrobenzene sulfonic acid (TNBS) to mice. Mice in the treatment group were gavage THDCA (20, 40, and 80 mg/kg/day) or sulfasalazine (500 mg/kg/day) or azathioprine (10 mg/kg/day). The pathologic markers of colitis were comprehensively assessed. The levels of Th1-/Th2-/Th17-/Treg-related inflammatory cytokines and transcription factors were detected by ELISA, RT-PCR, and Western blotting. The balance of Th1/Th2 and Th17/Treg cells was analyzed by Flow cytometry. KEY FINDINGS: THDCA significantly alleviated colitis by improving the body weight, colon length, spleen weight, histological characteristics, and MPO activity of colitis mice. THDCA reduced the secretion of Th1-/Th17-related cytokines (IFN-γ, IL-12p70, IL-6, IL-17A, IL-21, IL-22, and TNF-α) and the expressions of transcription factors (T-bet, STAT4, RORγt, and STAT3), but increase the production of Th2-/Treg-related cytokines (IL-4, IL-10, and TGF-ß1) and the expressions of transcription factors (GATA3, STAT6, Foxp3, and Smad3) in the colon. Meanwhile, THDCA inhibited the expressions of IFN-γ, IL-17A, T-bet, and RORγt, but improved the expression of IL-4, IL-10, GATA3, and Foxp3 in the spleen. Furthermore, THDCA restored the proportion of Th1, Th2, Th17, and Treg cells, and balanced the Th1/Th2 and Th17/Treg immune response of colitis mice. SIGNIFICANCE: THDCA can alleviate TNBS-induced colitis via regulating Th1/Th2 and Th17/Treg balance, which may represent a promising treatment for patients with colitis.


Asunto(s)
Colitis Ulcerosa , Colitis , Ratones , Animales , Colitis Ulcerosa/patología , Linfocitos T Reguladores , Interleucina-17 , Interleucina-10 , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Ácido Trinitrobencenosulfónico , Interleucina-4/farmacología , Colitis/inducido químicamente , Citocinas/metabolismo , Factores de Transcripción Forkhead/metabolismo , Células Th17
9.
World J Gastrointest Oncol ; 15(1): 102-111, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36684047

RESUMEN

BACKGROUND: The multi-target stool DNA test (MT-sDNA) has potential utility in the detection of colorectal cancer (CRC), but validation of its clinical accuracy has been limited in China. AIM: To evaluate the diagnostic performance of MT-sDNA and investigate the combined diagnostic value of alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA), and carbohydrate antigen 199 (CA199) with MT-sDNA in CRC and adenomas. METHODS: We evaluated the performance of the MT-sDNA kit based on a hospital clinical trial. In this case-control study, 135 participants from the Affiliated Hospital of Medical School of Ningbo University, including 51 CRC patients, 23 patients with adenomas, and 61 healthy controls were enrolled. We used a risk scoring system to determine the positivity of tests with histological diagnosis or colonoscopy as the reference standard. RESULTS: The main indices of sensitivity, specificity and accuracy were evaluated. The sensitivity and specificity for CRC detection were 90.2% and 83.3%, respectively, with an accuracy of 89.8%. For adenoma, the sensitivity and specificity were 56.5% and 68.9%, respectively, with an accuracy of 73.1%. The sensitivity and specificity of MT-sDNA combined with CEA in the diagnosis of adenoma were 78.3% and 60.7%, respectively. CONCLUSION: The MT-sDNA test showed better performance in the detection of CRC, which was superior to AFP, CEA, and CA199 separately, but not for predicting adenomas. The combination of MT-sDNA with CEA further improved the sensitivity for adenoma diagnosis.

10.
Nanomicro Lett ; 15(1): 9, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36484932

RESUMEN

Developing advanced thermal interface materials (TIMs) to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of high-power semiconductor devices. Based on the ultra-high basal-plane thermal conductivity, graphene is an ideal candidate for preparing high-performance TIMs, preferably to form a vertically aligned structure so that the basal-plane of graphene is consistent with the heat transfer direction of TIM. However, the actual interfacial heat transfer efficiency of currently reported vertically aligned graphene TIMs is far from satisfactory. In addition to the fact that the thermal conductivity of the vertically aligned TIMs can be further improved, another critical factor is the limited actual contact area leading to relatively high contact thermal resistance (20-30 K mm2 W-1) of the "solid-solid" mating interface formed by the vertical graphene and the rough chip/heat sink. To solve this common problem faced by vertically aligned graphene, in this work, we combined mechanical orientation and surface modification strategy to construct a three-tiered TIM composed of mainly vertically aligned graphene in the middle and micrometer-thick liquid metal as a cap layer on upper and lower surfaces. Based on rational graphene orientation regulation in the middle tier, the resultant graphene-based TIM exhibited an ultra-high thermal conductivity of 176 W m-1 K-1. Additionally, we demonstrated that the liquid metal cap layer in contact with the chip/heat sink forms a "liquid-solid" mating interface, significantly increasing the effective heat transfer area and giving a low contact thermal conductivity of 4-6 K mm2 W-1 under packaging conditions. This finding provides valuable guidance for the design of high-performance TIMs based on two-dimensional materials and improves the possibility of their practical application in electronic thermal management.

12.
Anticancer Drugs ; 33(9): 943-959, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35946526

RESUMEN

The aim of this study was to find the application value of selective polyadenylation in immune cell infiltration, biological transcription function and risk assessment of survival and prognosis in lung adenocarcinoma (LUAD). The processed original mRNA expression data of LUAD were downloaded, and the expression profiles of 594 patient samples were collected. The (APA) events in TCGA-NA-SEQ data were evaluated by polyadenylation site use Index (PDUI) values, and the invasion of stromal cells and immune cells and tumor purity were calculated to group and select the differential genes. Lasso regression and stratified analysis were used to examine the role of risk scores in predicting patient outcomes. The study also used the GDSC database to predict the chemotherapeutic sensitivity of each tumor sample and used a regression method to obtain an IC50 estimate for each specific chemotherapeutic drug treatment. Then CIBERSORT algorithm was used to conduct Spearman correlation analysis, immune regulatory factor analysis and TIDE immune system function analysis for gene expression level and immune cell content. Finally, the Kaplan-Meier curve was used to analyze the correlation between stromal score and the immune score of LUAD. In this study, APA's LUAD risk score prognostic model was constructed. KM survival analysis showed that immune score affected the prognosis of LUAD patients ( P = 0.027) but the matrix score was not statistically significant ( P = 0.1). We extracted 108 genes with APA events from 827 different genes and based on PUDI clustering and heat map, the survival rate of patients in the four groups was significantly different ( P = 0.05). Multiple omics studies showed that risk score was significantly positively correlated with Macrophages M0, T cells Follicular helper, B cells naive and NK cells resting. It is significantly negatively correlated with dendritic cells resting, mast cells resting, monocyte, T cells CD4 memory resting and B cells memory. We further explored the relationship between the expression of immunosuppressor genes and risk score and found that ADORA2A, BTLA, CD160, CD244, CD274, CD96, CSF1R and CTLA4 genes were highly correlated with the risk score. Selective poly adenylation plays an important role in the development and progression of LUAD, immune invasion, tumor cell invasion and metastasis and biological transcription, and affects the survival and prognosis of LUAD patients.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Antígenos CD , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Antígeno CTLA-4 , Humanos , Factores Inmunológicos , Inmunoterapia , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Pronóstico , ARN Mensajero
13.
Molecules ; 27(14)2022 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35889283

RESUMEN

Fungicides containing active ingredients of boscalid and pyraclostrobin have been widely applied in watermelon disease control. To provide data for avoiding health hazards caused by fungicides, we investigated its terminal residues and evaluated the dietary risk. In this work, watermelon samples were collected from field sites in six provinces and analyzed with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The average recoveries of boscalid and pyraclostrobin in the watermelon matrix were 97-108% and 93-103%, respectively, with the relative standard deviations (RSDs) ≤ 9.1%. The limits of quantifications (LOQs) were 0.01 and 0.005 mg/kg for boscalid and pyraclostrobin. Twenty-one days after applying the test pesticide with 270 g a.i./ha, the terminal residues of boscalid and pyraclostrobin were all below 0.05 mg/kg and below the maximum residue limits (MRLs) recommended by European Food Safety Authority (EFSA). According to the national estimated daily intake (NEDI), the risk quotients (RQs) of boscalid and pyraclostrobin were 48.4% and 62.6%, respectively. That indicated the pesticide evaluated in watermelon exhibited a low dietary risk to consumers. All data provide a reference for the MRL establishment of boscalid in watermelon for China.


Asunto(s)
Citrullus , Fungicidas Industriales , Residuos de Plaguicidas , Plaguicidas , Compuestos de Bifenilo , Cromatografía Líquida de Alta Presión , Fungicidas Industriales/química , Niacinamida/análogos & derivados , Residuos de Plaguicidas/análisis , Plaguicidas/análisis , Medición de Riesgo , Estrobilurinas , Espectrometría de Masas en Tándem/métodos
14.
Nanoscale ; 14(31): 11171-11178, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35880701

RESUMEN

Combining the advantages of high thermal conductivities and low graphene contents to fabricate polymer composites for applications in thermal management is still a great challenge due to the high defect degree of exfoliated graphene, the poor orientation of graphene in polymer matrices, and the horrible phonon scattering between graphene/graphene and graphene/polymer interfaces. Herein, mesoplasma chemical vapor deposition (CVD) technology was successfully employed to synthesize vertically aligned graphene nanowalls (GNWs), which are covalently bonded by high-quality CVD graphene nanosheets. The unique architecture leads to an excellent thermal enhancement capacity of the GNWs, and a corresponding composite film with a matrix of polyvinylidene fluoride (PVDF) presented a high through-plane thermal conductivity of 12.8 ± 0.77 W m-1 K-1 at a low filler content of 4.0 wt%, resulting in a thermal conductivity enhancement per 1 wt% graphene loading of 1659, which is far superior to that using conventional graphene structures as thermally conductive pathways. In addition, this composite exhibited an excellent capability in cooling a high-power light-emitting diode (LED) device under real application conditions. Our finding provides a new route to prepare high-performance thermal management materials with low filler loadings via the rational design of the microstructures/interfaces of graphene skeletons.

15.
ACS Nano ; 16(6): 9254-9266, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35674718

RESUMEN

The rapid increase of operation speed, transmission efficiency, and power density of miniaturized devices leads to a rising demand for electromagnetic interference (EMI) shielding and thermal management materials in the semiconductor industry. Therefore, it is essential to improve both the EMI shielding and thermal conductive properties of commonly used polyolefin components (such as polyethylene (PE)) in electronic systems. Currently, melt compounding is the most common method to fabricate polyolefin composites, but the difficulty of filler dispersion and high resistance at the filler/filler or filler/matrix interface limits their properties. Here, a fold fabrication strategy was proposed to prepare PE composites by incorporation of a well-aligned, seamless graphene framework premodified with MXene nanosheets into the matrix. We demonstrate that the physical properties of the composites can be further improved at the same filler loading by nanoscale interface engineering: the formation of hydrogen bonds at the graphene/MXene interface and the development of a seamlessly interconnected graphene framework. The obtained PE composites exhibit an EMI shielding property of ∼61.0 dB and a thermal conductivity of 9.26 W m-1 K-1 at a low filler content (∼3 wt %, including ∼0.4 wt % MXene). Moreover, other thermoplastic composites with the same results can also be produced based on our method. Our study provides an idea toward rational design of the filler interface to prepare high-performance polymer composites for use in microelectronics and microsystems.

16.
Open Life Sci ; 17(1): 10-21, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35128065

RESUMEN

An increasing number of microorganisms are being identified as pathogens for diseases in macroalgae, but the species composition of bacteria related to Caulerpa lentillifera, fresh edible green macroalgae worldwide, remains largely unclear. The bacterial communities associated with C. lentillifera were investigated by high-throughput 16S rDNA sequencing, and the bacterial diversities in washed and control groups were compared in this study. A total of 4,388 operational taxonomic units were obtained from all the samples, and the predominant prokaryotic phyla were Proteobacteria, Bacteroidetes, Planctomycetes, Cyanobacteria, Actinobacteria, Verrucomicrobia, Chloroflexi, and Acidobacteria in C. lentillifera. The bacterial diversity changed with seasons and showed an increasing trend of diversity with the rising temperature in C. lentillifera. There were slight reductions in the abundance and diversity of bacteria after washing with tap water for 2 h, indicating that only parts of the bacterial groups could be washed out, and hidden dangers in C. lentillifera still exist. Although the reduction in the abundance of some bacteria revealed a positive significance of washing C. lentillifera with tap water on food safety, more effective cleaning methods still need to be explored.

17.
Front Neurosci ; 16: 820106, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185459

RESUMEN

Alcohol use disorders (AUD) is characterized by persistent or intermittent alcohol cravings and compulsive drinking. The functional changes in the central nervous system (CNS) after alcohol consumption are alcohol-associated cognitive impairment and mood disorders, which are major health issues reported in AUDs. Studies have shown that transferring the intestinal microbiota from AUDs patients to germ-free animals causes learning and memory dysfunction, depression and anxiety-like behavior, indicating the vital role of intestinal microbiota in development of neuropsychiatric disorders in AUD. Intestinal flora composition of AUD patients are significantly different from normal people, suggesting that intestinal flora imbalance orchestrate the development of neuropsychiatric disorders in AUD. Studies suggests that gut microbiome links bidirectional signaling network of the enteric nervous system (ENS) to central nervous system (CNS), forming gut-microbe-brain axis (brain-gut axis). In this review, we discussed pathogenesis and possible treatment of AUD-induced cognitive deficits, anxiety, and depression disorders. Further, we described the mechanism of intestinal flora imbalance and dysfunction of hippocampus-amygdala-frontal cortex (gut-limbic circuit system dysfunction). Therefore, we postulate therapeutic interventions of gut-brain axis as novel strategies for treatment of AUD-induced neuropsychiatric disorders.

18.
ACS Nano ; 15(8): 12922-12934, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34304570

RESUMEN

As the power density and integration level of electronic devices increase, there are growing demands to improve the thermal conductivity of polymers for addressing the thermal management issues. On the basis of the ultrahigh intrinsic thermal conductivity, graphene has exhibited great potential as reinforcing fillers to develop polymer composites, but the resultant thermal conductivity of reported graphene-based composites is still limited. Here, an interconnected and highly ordered graphene framework (HOGF) composed of high-quality and horizontally aligned graphene sheets was developed by a porous film-templated assembly strategy, followed by a stress-induced orientation process and graphitization post-treatment. After embedding into the epoxy (EP), the HOGF/EP composite (24.7 vol %) exhibits a record-high in-plane thermal conductivity of 117 W m-1 K-1, equivalent to ≈616 times higher than that of neat epoxy. This thermal conductivity enhancement is mainly because the HOGF as a filler concurrently has high intrinsic thermal conductivity, relatively high density, and a highly ordered structure, constructing superefficient phonon transport paths in the epoxy matrix. Additionally, the use of our HOGF/EP as a heat dissipation plate was demonstrated, and it achieved 75% enhancement in practical thermal management performance compared to that of conventional alumina for cooling the high-power LED.

19.
Nanomaterials (Basel) ; 11(5)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34067230

RESUMEN

Given the thermal management problem aroused by increasing power densities of electronic components in the system, graphene-based papers have raised considerable interest for applications as thermal interface materials (TIMs) to solve interfacial heat transfer issues. Significant research efforts have focused on enhancing the through-plane thermal conductivity of graphene paper; however, for practical thermal management applications, reducing the thermal contact resistance between graphene paper and the mating surface is also a challenge to be addressed. Here, a strategy aimed at reducing the thermal contact resistance between graphene paper and the mating surface to realize enhanced heat dissipation was demonstrated. For this, graphene paper was decorated with polydopamine EGaIn nanocapsules using a facile dip-coating process. In practical TIM application, there was a decrease in the thermal contact resistance between the TIMs and mating surface after decoration (from 46 to 15 K mm2 W-1), which enabled the decorated paper to realize a 26% enhancement of cooling efficiency compared with the case without decoration. This demonstrated that this method is a promising route to enhance the heat dissipation capacity of graphene-based TIMs for practical electronic cooling applications.

20.
Adv Sci (Weinh) ; 8(7): 2003734, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33854896

RESUMEN

Graphene is usually embedded into polymer matrices for the development of thermally conductive composites, preferably forming an interconnected and anisotropic framework. Currently, the directional self-assembly of exfoliated graphene sheets is demonstrated to be the most effective way to synthesize anisotropic graphene frameworks. However, achieving a thermal conductivity enhancement (TCE) over 1500% with per 1 vol% graphene content in polymer matrices remains challenging, due to the high junction thermal resistance between the adjacent graphene sheets within the self-assembled graphene framework. Here, a multiscale structural modulation strategy for obtaining highly ordered structure of graphene framework and simultaneously reducing the junction thermal resistance is demonstrated. The resultant anisotropic framework contributes to the polymer composites with a record-high thermal conductivity of 56.8-62.4 W m-1 K-1 at the graphene loading of ≈13.3 vol%, giving an ultrahigh TCE per 1 vol% graphene over 2400%. Furthermore, thermal energy management applications of the composites as phase change materials for solar-thermal energy conversion and as thermal interface materials for electronic device cooling are demonstrated. The finding provides valuable guidance for designing high-performance thermally conductive composites and raises their possibility for practical use in thermal energy storage and thermal management of electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...