Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124411, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38728851

RESUMEN

The advancement of biological imaging techniques critically depends on the development of novel near-infrared (NIR) fluorescent probes. In this study, we introduce a designed NIR fluorescent probe, NRO-ßgal, which exhibits a unique off-on response mechanism to ß-galactosidase (ß-gal). Emitting a fluorescence peak at a wavelength of 670 nm, NRO-ßgal showcases a significant Stokes shift of 85 nm, which is indicative of its efficient energy transfer and minimized background interference. The probe achieves a remarkably low in vitro detection limit of 0.2 U/L and demonstrates a rapid response within 10 min, thereby underscoring its exceptional sensitivity, selectivity, and operational swiftness. Such superior analytical performance broadens the horizon for its application in intricate biological imaging studies. To validate the practical utility of NRO-ßgal in bio-imaging, we employed ovarian cancer cell and mouse models, where the probe's efficacy in accurately delineating tumor cells was examined. The results affirm NRO-ßgal's capability to provide sharp, high-contrast images of tumor regions, thereby significantly enhancing the precision of surgical tumor resection. Furthermore, the probe's potential for real-time monitoring of enzymatic activity in living tissues underscores its utility as a powerful tool for diagnostics in oncology and beyond.

2.
Aging (Albany NY) ; 16(7): 6613-6626, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38613804

RESUMEN

Ubiquitination of the proteins is crucial for governing protein degradation and regulating fundamental cellular processes. Deubiquitinases (DUBs) have emerged as significant regulators of multiple pathways associated with cancer and other diseases, owing to their capacity to remove ubiquitin from target substrates and modulate signaling. Consequently, they represent potential therapeutic targets for cancer and other life-threatening conditions. USP43 belongs to the DUBs family involved in cancer development and progression. This review aims to provide a comprehensive overview of the existing scientific evidence implicating USP43 in cancer development. Additionally, it will investigate potential small-molecule inhibitors that target DUBs that may have the capability to function as anti-cancer medicines.


Asunto(s)
Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Animales , Ubiquitinación , Endopeptidasas/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Transducción de Señal , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
3.
Int J Biol Macromol ; 256(Pt 2): 128342, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37995794

RESUMEN

Skin aging has become a major urgent problem to be solved. Evidence reveals that oxidation and glycosylation are two dominant inducements of aging. Resveratrol (RES) with outstanding anti-oxidant effect and carnosine (CAR) with superb anti-glycation property were selected as two model drugs to evaluate the feasibility of their synergistic anti-aging effect. RES and CAR at the most desired mass ratio, supplying the most superior synergistic anti-aging effects were further encapsulated in liposomes (LP), which were separately coated with chitosan (CS) and catechol chitosan (Cat-CS) to increase the transdermal penetration. Their anti-aging efficacy was explored in human skin fibroblast (HSF) and human immortalized keratinocytes (HaCaT) cells, as well as the back skin of guinea pigs. Herein, RES and CAR at the mass ratio of 2:1 exhibited the most ideal synergistic anti-aging effect. The constructed liposomes have been shown to possess excellent fundamental properties and sustained-release properties. The aging-related indicator levels in the two cells and guinea pigs were obviously improved for the RES + CAR@Cat-CS-LP group. Additionally, skin appearance, tissue morphology, and collagen content were visibly improved, indicating its perfect anti-aging effect. In conclusion, RES + CAR@Cat-CS-LP is expected to be exploited as a potential anti-aging drug delivery system.


Asunto(s)
Carnosina , Quitosano , Envejecimiento de la Piel , Humanos , Animales , Cobayas , Liposomas , Quitosano/farmacología , Resveratrol/farmacología , Envejecimiento , Catecoles
4.
Biomed Pharmacother ; 168: 115717, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37862965

RESUMEN

Pancreatic cancer (PC) represents a group of malignant tumours originating from pancreatic duct epithelial cells and acinar cells, and the 5-year survival rate of PC patients is only approximately 12%. Molecular targeted drugs are specific drugs designed to target and block oncogenes, and they have become promising strategies for the treatment of PC. Compared to traditional chemotherapy drugs, molecular targeted drugs have greater targeting precision, and they have significant therapeutic effects and minimal side effects. This article reviews several molecular targeted drugs that are currently in the experimental stage for the treatment of PC; these include antibody-drug conjugates (ADCs), aptamer-drug conjugates (ApDCs) and peptide-drug conjugates (PDCs). ADCs can specifically recognize cell surface antigens and reduce systemic exposure and toxicity of chemotherapy drugs. By delivering nucleic acid drugs to target cells, the targeting RNA of ApDCs can inhibit the expression or translation of mutated genes, thereby inhibiting tumour development. Moreover, PDCs can effectively penetrate tumour cells, and the peptide groups in PDCs preferentially target tumour cells with minimal side effects. In the targeted therapy of PC, molecular targeted drugs have very broad prospects, which provides new hope for the clinical treatment of PC patients and is worth further research.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Péptidos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Pancreáticas
6.
Cancer Gene Ther ; 30(12): 1624-1635, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37679528

RESUMEN

α-Catenin plays a critical role in tissue integrity, repair, and embryonic development. However, the post-translational modifications of α-catenin and the correlative roles in regulating cancer progression remain unclear. Here, we report that α-catenin is acetylated by p300, and identify three acetylation sites, K45, K866, and K881. Conversely, α-catenin acetylation can be reversed by deacetylase HDAC6. Mechanistically, α-catenin acetylation releases the transcriptional coactivator Yes-associated protein 1 (Yap1) by blocking the interaction between α-catenin and Yap1, and promotes the accumulation of Yap1 in the nucleus. Through this mechanism, acetylation weakens the capacity of α-catenin to inhibit breast cancer cell proliferation and tumor growth in mice. Meanwhile, we show that CDDP induces acetylation of α-catenin, and acetylated α-catenin resists the apoptosis under CDDP conditions. Additionally, acetylation inhibits the proteasome-dependent degradation of α-catenin, thus enhancing the stability of α-catenin for storage. Taken together, our results demonstrate that α-catenin can be acetylated, an event that is key for the subcellular distribution of Yap1 and subsequent facilitation of breast tumorigenesis.


Asunto(s)
Neoplasias de la Mama , beta Catenina , Animales , Ratones , Acetilación , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , alfa Catenina/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Procesamiento Proteico-Postraduccional , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Int J Pharm ; 643: 123284, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37527732

RESUMEN

Depression is a chronic mental disorder which threatens human health and lives. However, the treatment of depression remains challenging largely due to blood brain barrier (BBB), which restricts drugs from entering the brain, resulting in a poor distribution of antidepressants in the brain. In this work, a novel brain-targeted drug delivery system was developed based on borneol-modified PEGylated graphene oxide (GO-PEG-BO). GO-PEG-BO was characterized and proved to possess excellent biocompatibility. By incorporating borneol, GO-PEG-BO could penetrate BBB efficiently by opening tight junctions and inhibiting the efflux system of BBB. The targeted distribution of GO-PEG-BO in the brain was observed by an in vivo biodistribution study. Moreover, GO-PEG-BO exhibited a neuroprotective effect, which is beneficial to the treatment of depression. Ginsenoside Rg1 (GRg1), which can relieve depressive symptoms but difficult to cross BBB, was loaded to GO-PEG-BO for the therapy of depression. In depressive rats, GRg1/GO-PEG-BO improved stress-induced anhedonia, despair and anxiety, and comprehensively relieved the depressive symptoms. In conclusion, GO-PEG-BO could serve as a promising nanocarrier for brain-targeted drug delivery, and provide a new strategy for the therapy of depression.


Asunto(s)
Encéfalo , Depresión , Ratas , Humanos , Animales , Depresión/tratamiento farmacológico , Distribución Tisular , Polietilenglicoles
9.
BMC Med ; 21(1): 329, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37635214

RESUMEN

BACKGROUND: Patients with acute pancreatitis (AP) exhibit specific phenotypes of gut microbiota associated with severity. Gut microbiota and host interact primarily through metabolites; regrettably, little is known about their roles in AP biological networks. This study examines how enterobacterial metabolites modulate the innate immune system in AP aggravation. METHODS: In AP, alterations in gut microbiota were detected via microbiomics, and the Lactobacillus metabolites of tryptophan were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). By culturing Lactobacillus with tryptophan, differential metabolites were detected by LC-MS/MS. Lipopolysaccharide (LPS)-stimulated RAW264.7 cells and mice with cerulein plus LPS-induced AP were used to evaluate the biological effect of norharman on M1 macrophages activation in AP development. Further, RNA sequencing and lipid metabolomics were used for screening the therapeutic targets and pathways of norharman. Confocal microscopy assay was used to detect the structure of lipid rafts. Molecular docking was applied to predict the interaction between norharman and HDACs. Luciferase reporter assays and chromatin immunoprecipitation (ChIP) were used to explore the direct mechanism of norharman promoting Rftn1 expression. In addition, myeloid-specific Rftn1 knockout mice were used to verify the role of Rftn1 and the reversed effect of norharman. RESULTS: AP induced the dysfunction of gut microbiota and their metabolites, resulting in the suppression of Lactobacillus-mediated tryptophan metabolism pathway. The Lactobacillus metabolites of tryptophan, norharman, inhibited the release of inflammatory factor in vitro and in vivo, as a result of its optimal inhibitory action on M1 macrophages. Moreover, norharman blocked multiple inflammatory responses in AP exacerbation due to its ability to maintain the integrity of lipid rafts and restore the dysfunction of lipid metabolism. The mechanism of norharman's activity involved inhibiting the enzyme activity of histone deacetylase (HDACs) to increase histone H3 at lysine 9/14 (H3K9/14) acetylation, which increased the transcription level of Rftn1 (Raftlin 1) to inhibit M1 macrophages' activation. CONCLUSIONS: The enterobacterial metabolite norharman can decrease HDACs activity to increase H3K9/14 acetylation of Rftn1, which inhibits M1 macrophage activation and restores the balance of lipid metabolism to relieve multiple inflammatory responses. Therefore, norharman may be a promising prodrug to block AP aggravation.


Asunto(s)
Lactobacillus , Pancreatitis , Animales , Ratones , Histona Desacetilasas , Triptófano , Enfermedad Aguda , Cromatografía Liquida , Lipopolisacáridos , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem , Enterobacteriaceae
10.
Molecules ; 28(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37630188

RESUMEN

With the advancement of computer technology, machine learning-based artificial intelligence technology has been increasingly integrated and applied in the fields of medicine, biology, and pharmacy, thereby facilitating their development. Transporters have important roles in influencing drug resistance, drug-drug interactions, and tissue-specific drug targeting. The investigation of drug transporter substrates and inhibitors is a crucial aspect of pharmaceutical development. However, long duration and high expenses pose significant challenges in the investigation of drug transporters. In this review, we discuss the present situation and challenges encountered in applying machine learning techniques to investigate drug transporters. The transporters involved include ABC transporters (P-gp, BCRP, MRPs, and BSEP) and SLC transporters (OAT, OATP, OCT, MATE1,2-K, and NET). The aim is to offer a point of reference for and assistance with the progression of drug transporter research, as well as the advancement of more efficient computer technology. Machine learning methods are valuable and attractive for helping with the study of drug transporter substrates and inhibitors, but continuous efforts are still needed to develop more accurate and reliable predictive models and to apply them in the screening process of drug development to improve efficiency and success rates.


Asunto(s)
Inteligencia Artificial , Proteínas de Neoplasias , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Proteínas de Transporte de Membrana , Aprendizaje Automático
11.
Molecules ; 28(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446913

RESUMEN

The kidney is critical in the human body's excretion of drugs and their metabolites. Renal transporters participate in actively secreting substances from the proximal tubular cells and reabsorbing them in the distal renal tubules. They can affect the clearance rates (CLr) of drugs and their metabolites, eventually influence the clinical efficiency and side effects of drugs, and may produce drug-drug interactions (DDIs) of clinical significance. Renal transporters and renal transporter-mediated DDIs have also been studied by many researchers. In this article, the main types of in vitro research models used for the study of renal transporter-mediated DDIs are membrane-based assays, cell-based assays, and the renal slice uptake model. In vivo research models include animal experiments, gene knockout animal models, positron emission tomography (PET) technology, and studies on human beings. In addition, in vitro-in vivo extrapolation (IVIVE), ex vivo kidney perfusion (EVKP) models, and, more recently, biomarker methods and in silico models are included. This article reviews the traditional research methods of renal transporter-mediated DDIs, updates the recent progress in the development of the methods, and then classifies and summarizes the advantages and disadvantages of each method. Through the sorting work conducted in this paper, it will be convenient for researchers at different learning stages to choose the best method for their own research based on their own subject's situation when they are going to study DDIs mediated by renal transporters.


Asunto(s)
Riñón , Proteínas de Transporte de Membrana , Animales , Humanos , Riñón/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Interacciones Farmacológicas , Transporte Biológico , Tasa de Depuración Metabólica , Preparaciones Farmacéuticas/metabolismo
12.
Cell Death Dis ; 14(5): 313, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37156774

RESUMEN

Breast cancer is the most common cancer affecting women worldwide. Many genes are involved in the development of breast cancer, including the Kruppel Like Factor 12 (KLF12) gene, which has been implicated in the development and progression of several cancers. However, the comprehensive regulatory network of KLF12 in breast cancer has not yet been fully elucidated. This study examined the role of KLF12 in breast cancer and its associated molecular mechanisms. KLF12 was found to promote the proliferation of breast cancer and inhibit apoptosis in response to genotoxic stress. Subsequent mechanistic studies showed that KLF12 inhibits the activity of the p53/p21 axis, specifically by interacting with p53 and affecting its protein stability via influencing the acetylation and ubiquitination of lysine370/372/373 at the C-terminus of p53. Furthermore, KLF12 disrupted the interaction between p53 and p300, thereby reducing the acetylation of p53 and stability. Meanwhile, KLF12 also inhibited the transcription of p21 independently of p53. These results suggest that KLF12 might have an important role in breast cancer and serve as a potential prognostic marker and therapeutic target.


Asunto(s)
Neoplasias de la Mama , Proteína p53 Supresora de Tumor , Humanos , Femenino , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Neoplasias de la Mama/genética , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Proliferación Celular/genética
13.
Cell Death Dis ; 14(4): 250, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024472

RESUMEN

Breast cancer is the most commonly diagnosed cancer, and its global impact is increasing. Its onset and progression are influenced by multiple cues, one of which is the disruption of the internal circadian clock. Cryptochrome 2 (Cry2) genetic dysregulation may lead to the development of some diseases and even tumors. In addition, post-translational modifications can alter the Cry2 function. Here, we aimed to elucidate the post-translational regulations of Cry2 and its role in breast cancer pathogenesis. We identified p300-drived acetylation as a novel Cry2 post-translational modification, which histone deacetylase 6 (HDAC6) could reverse. Furthermore, we found that Cry2 inhibits breast cancer proliferation, but its acetylation impairs this effect. Finally, bioinformatics analysis revealed that genes repressed by Cry2 in breast cancer were mainly enriched in the NF-κB pathway, and acetylation reversed this repression. Collectively, these results indicate a novel Cry2 regulation mechanism and provide a rationale for its role in breast tumorigenesis.


Asunto(s)
Neoplasias de la Mama , Relojes Circadianos , Humanos , Femenino , Criptocromos/genética , Criptocromos/metabolismo , Neoplasias de la Mama/patología , Acetilación , Factores de Transcripción/metabolismo , Relojes Circadianos/genética
14.
Biomed Pharmacother ; 161: 114444, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36857912

RESUMEN

Despite significant treatment advances, breast cancer remains the leading cause of cancer death in women. From the current treatment situation, in addition to developing chemoresistant tumours, distant organ metastasis, and recurrences, patients with breast cancer often have a poor prognosis. Aptamers as "chemical antibodies" may be a way to resolve this dilemma. Aptamers are single-stranded, non-coding oligonucleotides (DNA or RNA), resulting their many advantages, including stability for long-term storage, simplicity of synthesis and function, and low immunogenicity, a high degree of specificity and antidote. Aptamers have gained popularity as a method for diagnosing and treating specific tumors in recent years. This article introduces the application of ten different aptamer delivery systems in the treatment and diagnosis of breast cancer, and systematically reviews their latest research progress in breast cancer treatment and diagnosis. It provides a new direction for the clinical treatment of breast cancer.


Asunto(s)
Aptámeros de Nucleótidos , Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Aptámeros de Nucleótidos/uso terapéutico , Sistemas de Liberación de Medicamentos , ARN , Terapia Molecular Dirigida
15.
RSC Adv ; 13(12): 7798-7817, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36909750

RESUMEN

Microorganisms evolve resistance to antibiotics as a function of evolution. Antibiotics have accelerated bacterial resistance through mutations and acquired resistance through a combination of factors. In some cases, multiple antibiotic-resistant determinants are encoded in these genes, immediately making the recipient organism a "superbug". Current antimicrobials are no longer effective against infections caused by pathogens that have developed antimicrobial resistance (AMR), and the problem has become a crisis. Microorganisms that acquire resistance to chemotherapy (multidrug resistance) are a major obstacle for successful treatments. Pharmaceutical industries should be highly interested in natural product-derived compounds, as they offer new sources of chemical entities for the development of new drugs. Phytochemical research and recent experimental advances are discussed in this review in relation to the antimicrobial efficacy of selected natural product-derived compounds as well as details of synergistic mechanisms and structures. The present review recognizesand amplifies the importance of compounds with natural origins, which can be used to create safer and more effective antimicrobial drugs by combating microorganisms that are resistant to multiple types of drugs.

16.
Chemosphere ; 322: 138136, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36796526

RESUMEN

Indoor window films can represent short-term air pollution conditions of indoor environment through rapidly capturing organic contaminants as effective passive air samplers. To investigate the temporal variation, influence factors of polycyclic aromatic hydrocarbons (PAHs) in indoor window films, and the exchange behavior with gas phase in college dormitories, 42 pairs window films of interior and exterior window surfaces and corresponding indoor gas phase and dust samples were collected monthly in six selected dormitories, Harbin, China, from August to December 2019 and September 2020. The average concentration of ∑16PAHs in indoor window films (398 ng/m2) was significantly (p < 0.01) lower than that in outdoors (652 ng/m2). In addition, the median indoor/outdoor ∑16PAHs concentration ratio was close to 0.5, showing that outdoor air acted as a major PAH source to indoor environment. The 5-ring PAHs were mostly dominant in window films whereas the 3-ring PAHs contributed mostly in gas phase. 3-ring PAHs and 4-ring PAHs were both important contributors for dormitory dust. Window films showed stable temporal variation, i.e. PAH concentrations in heating months were higher than those in non-heating months. The atmospheric O3 concentration was the main influence factor of PAHs in indoor window films. PAHs with low molecular weight in indoor window films rapidly reached film/air equilibrium phase within in dozens of hours. The large deviation in the slope of the log KF-A versus log KOA regression line from that in reported equilibrium formula might be the difference between the window film composition and octanol.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Hidrocarburos Policíclicos Aromáticos , Humanos , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Monitoreo del Ambiente , Polvo
17.
Cell Oncol (Dordr) ; 46(3): 717-733, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36732432

RESUMEN

PURPOSE: Epithelial-to-mesenchymal transition (EMT) is an important cause of high mortality in breast cancer. Twist1 is one of the EMT transcription factors (EMT-TFs) with a noticeably short half-life, which is regulated by proteasome degradation pathways. Recent studies have found that USP13 stabilizes several specific oncogenic proteins. As yet, however, the relationship between Twist1 and USP13 has not been investigated. METHODS: Co-Immunoprecipitation, GST-pulldown, Western blot, qRT-PCR and immunofluorescence assays were used to investigate the role of USP13 in de-ubiquitination of Twist1. Chromatin immunoprecipitation and Luciferase reporter assays were used to investigate the role of Twist1 in inhibiting USP13 reporter transcription. Scratch wound healing, cell migration and invasion assays, and a mouse lung metastases assay were used to investigate the roles of USP13 and Twist1 in promoting breast cancer metastasis. RESULTS: We found that Twist1 can be de-ubiquitinated by USP13. In addition, we found that the protein levels of Twist1 dose-dependently increased with USP13 overexpression, while USP13 knockdown resulted in a decreased expression of endogenous Twist1. We also found that USP13 can directly interact with Twist1 and specifically cleave the K48-linked polyubiquitin chains of Twist1 induced by FBXL14. We found that the effect of USP13 in promoting the migration and invasion capacities of breast cancer cells can at least partly be achieved through its regulation of Twist1, while Twist1 can inhibit the transcriptional activity of USP13. CONCLUSIONS: Our data indicate that an interplay between Twist1 and USP13 can form a negative physiological feedback loop. Our findings show that USP13 may play an essential role in breast cancer metastasis by regulating Twist1 and, as such, provide a potential target for the clinical treatment of breast cancer.


Asunto(s)
Neoplasias Pulmonares , Neoplasias Cutáneas , Animales , Ratones , Ubiquitinación , Neoplasias Pulmonares/secundario , Transición Epitelial-Mesenquimal , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Metástasis de la Neoplasia , Melanoma Cutáneo Maligno
18.
Luminescence ; 38(2): 159-165, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36601685

RESUMEN

Hydrazine (N2 H4 ) is a highly toxic and harmful chemical reagent. Fluorescent probes are simple and efficient tools for sensitive monitoring of N2 H4 enrichment in the environment, humans, animals, and plants. In this work, a ratiometric fluorescent probe (FP-1) containing coumarin was used for hydrazine detection. The proposed FP-1 probe had a linear detection range of 0-250 µM and a limit of detection (LOD) of 0.059 µM (1.89 ppb). A large red Stokes shift was observed in fluorescence and UV-vis absorption spectra due to the hydrolysis of ester bonds between FP-1 and hydrazine. The hydrazine detection mechanism of FP-1 was also investigated using density functional theory (DFT) calculations. Finally, FP-1 could sensitively and selectively monitor hydrazine in actual water samples and BEAS-2B cells. Therefore, it has great application potential in environmental monitoring and disease diagnosis.


Asunto(s)
Colorantes Fluorescentes , Agua , Humanos , Colorantes Fluorescentes/química , Fluoresceína , Espectrometría de Fluorescencia , Hidrazinas/química , Cumarinas/química
19.
Phytother Res ; 37(5): 1823-1838, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36581492

RESUMEN

Total saponins of Panax ginseng (TSPG) have antidepressant effects. However, the underlying antidepressant mechanism of TSPG remains not clear. This study aimed to predict the mechanism of TSPG by bioinformatics analysis and to verify it experimentally. Bioinformatics analysis showed that the antidepressant effects of TSPG may be related to inflammation, and CX3CL1/CX3CR1 may play a key mediating role. Wistar rats were exposed to chronic unpredictable mild stress (CUMS) for 6 weeks, and TSPG (50 mg/kg/d, 100 mg/kg/d) was administered throughout the modeling period. It was found that TSPG improves depressive behavior and reduces neuropathic damage in the hippocampus in rats. Meanwhile, TSPG decreased mRNA and protein expression of pro-inflammatory cytokines and CX3CL1/CX3CR1 and inhibited P38 and JNK protein phosphorylation in the hippocampus. Rat astrocytes were employed to explore further the potential mechanism of TSPG in regulating CX3CL1/CX3CR1. The results showed that CX3CL1 small interfering RNA (siRNA-CX3CL1) and CX3CR1 inhibitor (JMS-17-2) had similar effects to TSPG, that is, reduced inflammatory response, reactive oxygen species (ROS), and phosphorylation of P38 and JNK proteins, while overexpression of CX3CL1 (pcDNA-CX3CL1) counteracted the above effects of TSPG. It is suggested that the antidepressant effect of TSPG may be achieved through inhibition of CX3CL1/CX3CR1.


Asunto(s)
Panax , Saponinas , Ratas , Animales , Saponinas/farmacología , Enfermedades Neuroinflamatorias , Panax/metabolismo , Ratas Wistar , Citocinas/metabolismo , Quimiocina CX3CL1 , Receptor 1 de Quimiocinas CX3C/metabolismo
20.
Biomed Pharmacother ; 157: 113992, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36395610

RESUMEN

Abnormal intracellular metabolism not only provides nutrition for tumor occurrence and development, but also sensitizes the function of various immune cells in the immune microenvironment to promote tumor immune escape. This review discusses the emerging role of immune cells in the progress of pancreatic cancer, acrossing metabolic reprogramming and key metabolic pathways present in different immune cell types. At present, the hotspots of metabolic reprogramming of immune cells in pancreatic cancer progression mainly focuses on glucose metabolism, lipid metabolism, tricarboxylic acid cycle and amino acid metabolism, which affect the function of anti-tumor immune cells and immunosuppressive cells in the microenvironment, such as macrophages, dendritic cells, T cells, myeloid-derived suppressor cells, neutrophils and B cells by a series of key metabolic signaling pathways, such as PI3K/AKT, mTOR, AMPK, HIF-1α, c-Myc and p53. Drugs that target the tumor metabolism pathways for clinical treatment of pancreatic cancer are also systematically elaborated, which may constitute food for others' projects involved in clinical anti-cancer research.


Asunto(s)
Neoplasias , Neoplasias Pancreáticas , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias/metabolismo , Transducción de Señal , Linfocitos T , Metabolismo Energético , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA