Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Cardiovasc Med ; 11: 1417005, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108666

RESUMEN

Objective: To characterize the gas production phenomenon in the animal model of left ventricular assist device (LVAD), and study its mechanism. Methods: An in vitro bubble precipitation experiment was conducted, and the blood samples of Parma spp. animals were divided into ordinary group and oxygen-enriched group according to whether they were oxygenated or not at the time of blood collection, and a static control group was set up respectively. Blood gases were drawn and analyzed before and after the experiment. Activate the pump, and the number of air bubbles in the loop was measured by ultrasound at different rotational speeds; CFD was applied to simulate the flow field in the blood pump, and pressure, fluid velocity vector and shear force diagrams were plotted, and a thrombus model was constructed and the flow field was simulated and plotted as a cloud diagram. Results: There was a statistical difference in the number of bubbles in the inflow and outflow tubes of the blood pump (P values of 0.04 and 0.023, respectively), and the number of bubbles in the outflow tubes of both groups was significantly higher than the number of bubbles in the inflow tubes. The number of bubbles in the tubes of both the oxygen-enriched and normal groups was significantly higher than that in the inflow group. In both the normal and oxygen-enriched groups, more gas was produced at higher speeds than at lower speeds. Blood gas analysis showed that the reduced gas composition in the blood was mainly oxygen. Flow field simulation results: the high rotation speed group had lower central pressure and greater scalar shear. The thrombus simulation group was more prone to turbulence, sudden pressure changes, and greater shear than the normal group. Conclusion: Blood gas production is associated with higher partial pressures of blood oxygen, higher rotation speed, and intrapump thrombosis, and the mechanism of pump gas production is degassing of dissolved gases rather than cavitation of water, and the gas released is most likely to have oxygen. The degassing phenomenon is an warning factor for pump thrombosis.

2.
Sensors (Basel) ; 24(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39205090

RESUMEN

When autonomous underwater vehicles (AUVs) perform underwater tasks, the absence of GPS position assistance can lead to a decrease in the accuracy of traditional navigation systems, such as the extended Kalman filter (EKF), due to the accumulation of errors. To enhance the navigation accuracy of AUVs in the absence of position assistance, this paper proposes an innovative navigation method that integrates a position correction model and a velocity model. Specifically, a velocity model is developed using a dynamic model and the Optimal Pruning Extreme Learning Machine (OP-ELM) method. This velocity model is trained online to provide velocity outputs during the intervals when the Doppler Velocity Log (DVL) is not updating, ensuring more consistent and reliable velocity estimation. Additionally, a position correction model (PCM) is constructed, based on a hybrid gated recurrent neural network (HGRNN). This model is specifically designed to correct the AUV's navigation position when GPS data are unavailable underwater. The HGRNN utilizes historical navigation data and patterns learned during training to predict and adjust the AUV's estimated position, thereby reducing the drift caused by the lack of real-time position updates. Experimental results demonstrate that the proposed VM-PCM-EKF algorithm can significantly improve the positioning accuracy of the navigation system, with a maximum accuracy improvement of 87.2% compared to conventional EKF algorithms. This method not only improves the reliability and accuracy of AUV missions but also opens up new possibilities for more complex and extended underwater operations.

4.
Carbohydr Polym ; 343: 122482, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39174140

RESUMEN

Sophisticated structure design and multi-step manufacturing processes for balancing spectra-selective optical property and the necessary applicable performance for human thermal-wet regulation, is the major limitation in wide application of radiative cooling materials. Herein, we proposed a biomass confinement strategy to a gradient porous Janus cellulose film for enhanced optical performance without compromising thermal-wet comfortable. The bacterial cellulose confined grow in the micro-nano pores between PP nonwoven fabric and SiO2 achieving the cross-scale gradient porous Janus structure. This structure enables the inorganic scatterers even distribution forming multi-reflecting optical mechanism, thereby, gradient porous Janus film demonstrates a reflectivity of 93.1 % and emissivity of 88.1 %, attains a sub-ambient cooling temperature difference of 2.8 °C(daytime) and 8.5 °C(night). Film enables bare skin to avoid overheating by 7.7 °C compared to cotton fabric. It reaches a 17.2 °C building cooling temperature under 1 sun radiance. Moreover, biomass confined micro-nano gradient porous structure integrating with Janus wet gradient guarantees the driven force for directional water transportation, which satisfies the thermal-wet comfortable demands for human cooling application without any further complicated process. Overall, bacterial cellulose based biomass confining strategy provides a prospective method to obtain outdoor-service performance in cooling materials.


Asunto(s)
Biomasa , Celulosa , Celulosa/química , Porosidad , Humanos , Dióxido de Silicio/química , Frío , Textiles
5.
Bioresour Technol ; 411: 131324, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39179136

RESUMEN

To achieve efficient dye degradation, we reported a visible light-driven biomass photo-enzyme coupled system, which was constructed by assembling g-C3N4 during in situ culture and immobilizing laccase via metal-organic framework (MOF). Benefited from the network and porous structure of bacterial cellulose (BC), the g-C3N4 could be stably interspersed, and MOF grew g-C3N4/BC to encapsulate laccase. BC improves the reusability of the system, while combined with MOF encapsulation, avoiding direct contact between photo- and enzyme- catalysts. Importantly, thanks to the existence of electron transfer from photocatalysis to enzyme, the photogenerated electron hole recombination within the photocatalyst reduced, improving catalyzed reaction efficiency. The degradation efficiency of the catalysis system within 10 min for methylene blue and rhodamine B could reach 100 % and 96.1 %, respectively, which could rapidly degrade dye and recycle for more than 10 times. This research can shine new light on the development of advanced wastewater treatment.

6.
Chem Sci ; 15(29): 11367-11373, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39055011

RESUMEN

Exploration of pressure-resistant materials largely facilitates their operation under extreme conditions where a stable structure and properties are highly desirable. However, under extreme conditions, such as a high pressure over 30.0 GPa, fluorescence quenching generally occurs in most materials. Herein, pressure-induced emission enhancement (PIEE) by a factor of 4.2 is found in Ga2O3 nanocrystals (NCs), a fourth-generation ultrawide bandgap semiconductor. This is mainly attributed to pressure optimizing the intrinsic lattice defects of the Ga2O3 nanocrystals, which was further confirmed by first-principles calculations. Note that the bright blue emission could be stabilized even up to a high pressure of 30.6 GPa, which is of great significance in the essential components of white light. Notably, after releasing the pressure to ambient conditions, the emission of the Ga2O3 nanocrystals can completely recover, even after undergoing multiple repeated pressurizations. In addition to stable optical properties, synchrotron radiation shows that the Ga2O3 nanocrystals remain in the cubic structure described by space group Fd3m upon compression, demonstrating the structural stability of the Ga2O3 nanocrystals under high pressure. This study pays the way for the application of oxide nanomaterials in pressure anti-counterfeiting and pressure information memory devices.

7.
Open Biol ; 14(7): 230355, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38981515

RESUMEN

Epigenetic regulation is important for circadian rhythm. In previous studies, multiple histone modifications were found at the Period (Per) locus. However, most of these studies were not conducted in clock neurons. In our screen, we found that a CoREST mutation resulted in defects in circadian rhythm by affecting Per transcription. Based on previous studies, we hypothesized that CoREST regulates circadian rhythm by regulating multiple histone modifiers at the Per locus. Genetic and physical interaction experiments supported these regulatory relationships. Moreover, through tissue-specific chromatin immunoprecipitation assays in clock neurons, we found that the CoREST mutation led to time-dependent changes in corresponding histone modifications at the Per locus. Finally, we proposed a model indicating the role of the CoREST complex in the regulation of circadian rhythm. This study revealed the dynamic changes of histone modifications at the Per locus specifically in clock neurons. Importantly, it provides insights into the role of epigenetic factors in the regulation of dynamic gene expression changes in circadian rhythm.


Asunto(s)
Ritmo Circadiano , Proteínas Co-Represoras , Epigénesis Genética , Neuronas , Proteínas Circadianas Period , Animales , Neuronas/metabolismo , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Ratones , Proteínas Co-Represoras/metabolismo , Proteínas Co-Represoras/genética , Histonas/metabolismo , Código de Histonas , Mutación , Relojes Circadianos/genética , Regulación de la Expresión Génica
8.
Sci Rep ; 14(1): 13373, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862547

RESUMEN

Generally, the recognition performance of lightweight models is often lower than that of large models. Knowledge distillation, by teaching a student model using a teacher model, can further enhance the recognition accuracy of lightweight models. In this paper, we approach knowledge distillation from the perspective of intermediate feature-level knowledge distillation. We combine a cross-stage feature fusion symmetric framework, an attention mechanism to enhance the fused features, and a contrastive loss function for teacher and student models at the same stage to comprehensively implement a multistage feature fusion knowledge distillation method. This approach addresses the problem of significant differences in the intermediate feature distributions between teacher and student models, making it difficult to effectively learn implicit knowledge and thus improving the recognition accuracy of the student model. Compared to existing knowledge distillation methods, our method performs at a superior level. On the CIFAR100 dataset, it boosts the recognition accuracy of ResNet20 from 69.06% to 71.34%, and on the TinyImagenet dataset, it increases the recognition accuracy of ResNet18 from 66.54% to 68.03%, demonstrating the effectiveness and generalizability of our approach. Furthermore, there is room for further optimization of the overall distillation structure and feature extraction methods in this approach, which requires further research and exploration.

9.
Genome Res ; 34(5): 725-739, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38866549

RESUMEN

Diapause represents a crucial adaptive strategy used by insects to cope with changing environmental conditions. In North China, the Asian corn borer (Ostrinia furnacalis) enters a winter larval diapause stage. Although there is growing evidence implicating epigenetic mechanisms in diapause regulation, it remains unclear whether dynamic genome-wide profiles of epigenetic modifications exist during this process. By investigating multiple histone modifications, we have discovered the essential roles of H3K9me3 and H3K27me3 during diapause of the Asian corn borer. Building upon previous findings in vertebrates highlighting the connection between DNA methylation and repressive histone methylations, we have examined changes in the genome-wide profile of H3K9me3, H3K27me3, and DNA methylation at the nondiapause, prediapause, and diapause stages. Data analysis reveals significant alterations in these three modifications during diapause. Moreover, we observe a correlation between the H3K9me3 and H3K27me3 modification sites during diapause, whereas DNA modifications show little association with either H3K9me3 or H3K27me3. Integrative analysis of epigenome and expression data unveils the relationship between these epigenetic modifications and gene expression levels at corresponding diapause stages. Furthermore, by studying the function of histone modifications on genes known to be important in diapause, especially those involved in the juvenile pathway, we discover that the juvenile hormone pathway lies downstream from H3K9me3 and H3K27me3 histone modifications. Finally, the analysis of gene loci with modified modifications unreported in diapause uncovers novel pathways potentially crucial in diapause regulation. This study provides a valuable resource for future investigations aiming to elucidate the underlying mechanisms of diapause.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Histonas , Mariposas Nocturnas , Animales , Histonas/metabolismo , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Larva/genética , Larva/metabolismo , Diapausa de Insecto/genética , Genoma de los Insectos , Diapausa/genética , Código de Histonas , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
10.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G643-G658, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38564323

RESUMEN

Unacylated ghrelin (UAG), the unacylated form of ghrelin, accounts for 80%-90% of its circulation. Accumulated studies have pointed out that UAG may be used to treat metabolic disorders. This study aimed to investigate the effect of intestinal perfusion of UAG on metabolically associated fatty liver disease (MAFLD) induced by a high-fat diet and its possible mechanisms. Neuronal retrograde tracking combined with immunofluorescence, central administration of a glucagon-like peptide-1 receptor (GLP-1R) antagonist, and hepatic vagotomy was performed to reveal its possible mechanism involving a central glucagon-like peptide-1 (GLP-1) pathway. The results showed that intestinal perfusion of UAG significantly reduced serum lipids, aminotransferases, and food intake in MAFLD rats. Steatosis and lipid accumulation in the liver were significantly alleviated, and lipid metabolism-related enzymes in the liver were regulated. UAG upregulated the expression of GLP-1 receptor (GLP-1R) in the paraventricular nucleus (PVN) and GLP-1 in the nucleus tractus solitarii (NTS), as well as activated GLP-1 neurons in the NTS. Furthermore, GLP-1 fibers projected from NTS to PVN were activated by the intestinal perfusion of UAG. However, hepatic vagotomy and GLP-1R antagonists delivered into PVN before intestinal perfusion of UAG partially attenuated its alleviation of MAFLD. In conclusion, intestinal perfusion of UAG showed a therapeutic effect on MAFLD, which might be related to its activation of the GLP-1 neuronal pathway from NTS to PVN. The present results provide a new strategy for the treatment of MAFLD.NEW & NOTEWORTHY Intestinal perfusion of UAG, the unacylated form of ghrelin, has shown promising potential for treating MAFLD. This study unveils a potential mechanism involving the central GLP-1 pathway, with UAG upregulating GLP-1R expression and activating GLP-1 neurons in specific brain regions. These findings propose a novel therapeutic strategy for MAFLD treatment through UAG and its modulation of the GLP-1 neuronal pathway.


Asunto(s)
Ghrelina , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Animales , Ghrelina/metabolismo , Ghrelina/farmacología , Masculino , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Dieta Alta en Grasa , Metabolismo de los Lípidos/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Perfusión/métodos , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Vagotomía
11.
Nat Commun ; 15(1): 3336, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637528

RESUMEN

To understand aging impact on the circadian rhythm, we screened for factors influencing circadian changes during aging. Our findings reveal that LKRSDH mutation significantly reduces rhythmicity in aged flies. RNA-seq identifies a significant increase in insulin-like peptides (dilps) in LKRSDH mutants due to the combined effects of H3R17me2 and H3K27me3 on transcription. Genetic evidence suggests that LKRSDH regulates age-related circadian rhythm changes through art4 and dilps. ChIP-seq analyzes whole genome changes in H3R17me2 and H3K27me3 histone modifications in young and old flies with LKRSDH mutation and controls. The results reveal a correlation between H3R17me2 and H3K27me3, underscoring the role of LKRSDH in regulating gene expression and modification levels during aging. Overall, our study demonstrates that LKRSDH-dependent histone modifications at dilps sites contribute to age-related circadian rhythm changes. This data offers insights and a foundational reference for aging research by unveiling the relationship between LKRSDH and H3R17me2/H3K27me3 histone modifications in aging.


Asunto(s)
Código de Histonas , Histonas , Histonas/genética , Histonas/metabolismo , Ritmo Circadiano/genética , Genoma
12.
ACS Appl Mater Interfaces ; 16(7): 9313-9322, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38323399

RESUMEN

Liquid crystal elastomers (LCEs) are a kind of polymer network that combines the entropic elasticity of polymer networks and the mesogenic unit by means of mild cross-linking. LCEs have been extensively investigated in various fields, including artificial muscles, actuators, and microrobots. However, LCEs are characterized by the poor mechanical properties of the light polymers themselves. In this study, we propose to prepare a carbon nanotube/liquid crystal elastomer (CNT/LCE) composite yarn by electrospinning technology and a two-step cross-linking strategy. The CNT/LCE composite yarn exhibits a reversible shrinkage ratio of nearly 70%, a tensile strength of 16.45 MPa, and a relatively sensitive response speed of ∼3 s, enabling a fast response by photothermal actuation. The research disclosed in this article may provide new insights for the development of artificial muscles and next-generation smart robots.

13.
Adv Sci (Weinh) ; 11(17): e2400557, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38419378

RESUMEN

In nature, spider web is an interwoven network with high stability and elasticity from silk threads secreted by spider. Inspired by the structure of spider webs, light-driven liquid crystal elastomer (LCE) active yarn is designed with super-contractile and robust weavability. Herein, a novel biomimetic gold nanorods (AuNRs) @LCE yarn soft actuator with hierarchical structure is fabricated by a facile electrospinning and subsequent photocrosslinking strategies. Meanwhile, the inherent mechanism and actuation performances of the as-prepared yarn actuator with interleaving network are systematically analyzed. Results demonstrate that thanks to the unique "like-spider webs" structure between fibers, high molecular orientation within the LCE microfibers and good flexibility, they can generate super actuation strain (≈81%) and stable actuation performances. Importantly, benefit from the robust covalent bonding at the organic-inorganic interface, photopolymerizable AuNRs molecules are uniformly introduced into the polymer backbone of electrospun LCE yarn to achieve tailorable shape-morphing under different light intensity stimulation. As a proof-of-concept illustration, light-driven artificial muscles, micro swimmers, and hemostatic bandages are successfully constructed. The research disclosed herein can offer new insights into continuous production and development of LCE-derived yarn actuator that are of paramount significance for many applications from smart fabrics to flexible wearable devices.

14.
Nat Mater ; 23(3): 347-355, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37443381

RESUMEN

Transition metal dichalcogenide (TMD) nanotubes offer a unique platform to explore the properties of TMD materials at the one-dimensional limit. Despite considerable efforts thus far, the direct growth of TMD nanotubes with controllable chirality remains challenging. Here we demonstrate the direct and facile growth of high-quality WS2 and WSe2 nanotubes on Si substrates using catalytic chemical vapour deposition with Au nanoparticles. The Au nanoparticles provide unique accommodation sites for the nucleation of WS2 or WSe2 shells on their surfaces and seed the subsequent growth of nanotubes. We find that the growth mode of nanotubes is sensitive to the temperature. With careful temperature control, we realize ~79% WS2 nanotubes with single chiral angles, with a preference of 30° (~37%) and 0° (~12%). Moreover, we demonstrate how the geometric, electronic and optical properties of the synthesized WS2 nanotubes can be modulated by the chirality. We anticipate that this approach using Au nanoparticles as catalysts will facilitate the growth of TMD nanotubes with controllable chirality and promote the study of their interesting properties and applications.

15.
Int J Biol Macromol ; 257(Pt 2): 128741, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38101674

RESUMEN

Due to the overuse of antimicrobial drugs, bacterial resistance became an urgent problem to be solved. In this study, carbon quantum dots (CQDs) with high photodynamic antibacterial activity were synthesized by a one-pot hydrothermal method and introduced into bacterial cellulose (BC) dispersion solution. Through a wet-spinning and wet-twisting processing strategy, bionic ordering nanocomposite macrofiber (BC/CQDs-based yarn) based on BC were obtained. The results showed that BC/CQDs-based yarn had excellent tensile strength (226.8 MPa) and elongation (22.2 %). Utilizing the light-driven generation of singlet oxygen (1O2) and hydroxyl radical (·OH), BC/CQDs-based yarn demonstrated remarkable antibacterial efficacy, with 99.9999 % (6 log, P < 0.0001) and 96.54 % (1.46 log, P < 0.0004) effectiveness against E. coli and S. aureus, respectively. At the same time, BC/CQDs-based yarn also displayed the characteristics of photothermal, fluorescent, and biodegradability. In summary, the application potential of BC/CQDs-based yarn is significant, opening up a new strategy for the development of sustainable green weaving and bio-based multi-function yarn.


Asunto(s)
Puntos Cuánticos , Carbono , Celulosa/farmacología , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacología , Bacterias
16.
Life Sci Alliance ; 7(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914396

RESUMEN

Circadian rhythms are essential physiological feature for most living organisms. Previous studies have shown that epigenetic regulation plays a crucial role. There is a knowledge gap in the chromatin state of some key clock neuron clusters. In this study, we show that circadian rhythm is affected by the epigenetic regulator Polycomb (Pc) within the Drosophila clock neurons. To investigate the molecular mechanisms underlying the roles of Pc in these clock neuron clusters, we use targeted DamID (TaDa) to identify genes significantly bound by Pc in the neurons marked by C929-Gal4 (including l-LNvs cluster), R6-Gal4 (including s-LNvs cluster), R18H11-Gal4 (including DN1 cluster), and DVpdf-Gal4, pdf-Gal80 (including LNds cluster). It shows that Pc binds to the genes involved in the circadian rhythm pathways, arguing a direct role for Pc in regulating circadian rhythms through specific clock genes. This study shows the identification of Pc targets in the clock neuron clusters, providing potential resource for understanding the regulatory mechanisms of circadian rhythms by the PcG complex. Thus, this study provided an example for epigenetic regulation of adult behavior.


Asunto(s)
Proteínas de Drosophila , Neuropéptidos , Animales , Drosophila/metabolismo , Epigénesis Genética , Neuropéptidos/metabolismo , Proteínas de Drosophila/metabolismo , Ritmo Circadiano/genética , Neuronas/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo
17.
Nano Lett ; 23(24): 11982-11988, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38051759

RESUMEN

The strained interface of core@shell nanocrystals (NCs) can effectively modulate the energy level alignment, thereby significantly affecting the optical properties. Herein, the unique photoluminescence (PL) response of doped Mn ions is introduced as a robust probe to detect the targeted pressure-strain relation of CdS@ZnS NCs. Results show that the core experiences actually less pressure than the applied external pressure, attributed to the pressure-induced optimized interface that reduces the compressive strain on core. The pressure difference between core and shell increases the conduction band and valence band offsets and further achieves the core@shell configuration transition from quasi type II to type I. Accordingly, the PL intensity of CdS@ZnS NCs slightly increases, along with a faster blue-shift rate of PL peak under low pressure. This study elucidates the interplay between external physical pressure and interfacial chemical stress for core@shell NCs, leading to precise construction of interface engineering for practical applications.

18.
Artículo en Inglés | MEDLINE | ID: mdl-37908058

RESUMEN

Fiber-based supercapacitors (FSCs) exhibit desirable application potential and development prospects in wearable energy storage devices because of their flexibility and wearability. However, the low capacity in the unit volume and insufficient fiber strength hinder their further development in practical application. Herein, the MnO2 nanomaterials with regulatable crystalline structure were synthesized by one-step hydrothermal strategy. The formation of the MnO2 crystalline structure involved the "crimp-phase transition" process. Among them, the 2 × 2 tunnel type α-MnO2 nanowires exhibited excellent electrochemical capacitance (43.8 F g-1), high rate performance (61%, 0.25 to 6 A g-1), and remarkable cyclic stability (99%), which can be attributed to their good symmetry in space and high shared vertices proportion. On this basis, the α-MnO2 nanowires were coblended with GO to construct MnO2/rGO hybrid fibers by scalable continuous wet spinning and in situ acid reduction. Noteworthily, in MnO2/rGO hybrid fibers, the doping amount of MnO2 nanowires as high as 50 wt % could be achieved, while the strength reached 11.73 MPa, which can be ascribed to the superior surface morphology of MnO2 nanowires and the unique cement wall structure of hybrid fibers. Finally, the obtained hybrid fiber electrodes were assembled into symmetrical FSCs. Notably, the FSCs delivered remarkable volume specific capacitance (129.5 F cm-3) and impressive energy density (18 mWh cm-3) at 1.75 A cm-3. In addition, the assembled all-solid-state FSCs indicated excellent deformability and application potential. This work offers some insight for promoting the continuous preparation of fiber electrodes, the development of FSCs, and practical application in wearable energy textile.

19.
Med Biol Eng Comput ; 61(12): 3319-3333, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37668892

RESUMEN

Eye diseases often affect human health. Accurate detection of the optic disc contour is one of the important steps in diagnosing and treating eye diseases. However, the structure of fundus images is complex, and the optic disc region is often disturbed by blood vessels. Considering that the optic disc is usually a saliency region in fundus images, we propose a weakly-supervised optic disc detection method based on the fully convolution neural network (FCN) combined with the weighted low-rank matrix recovery model (WLRR). Firstly, we extract the low-level features of the fundus image and cluster the pixels using the Simple Linear Iterative Clustering (SLIC) algorithm to generate the feature matrix. Secondly, the top-down semantic prior information provided by FCN and bottom-up background prior information of the optic disc region are used to jointly construct the prior information weighting matrix, which more accurately guides the decomposition of the feature matrix into a sparse matrix representing the optic disc and a low-rank matrix representing the background. Experimental results on the DRISHTI-GS dataset and IDRiD dataset show that our method can segment the optic disc region accurately, and its performance is better than existing weakly-supervised optic disc segmentation methods. Graphical abstract of optic disc segmentation.


Asunto(s)
Glaucoma , Disco Óptico , Humanos , Disco Óptico/diagnóstico por imagen , Fondo de Ojo , Algoritmos , Redes Neurales de la Computación
20.
Environ Res ; 236(Pt 1): 116732, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37495065

RESUMEN

Chinese rural domestic waste has increased considerably with the modernization of agriculture and urbanization. Pyrolysis gasification is a common high-temperature waste treatment method. However, this method is usually accompanied by a large amount of particle emission. In this study, a rural domestic waste pyrolysis gasification station in Gansu Province, Northwest China, was selected for research. The particle emission characteristics of this station were analyzed, and the results showed that the original particle removal technologies were inefficient in fine particles. Hence, a new method of fine particle treatment, i.e., Cloud-Air-Purifying (CAP) technology, was explored herein. In CAP, fine particles grow in size via heterogeneous condensation in a supersaturated water vapor environment and are then collected efficiently using a supergravity field. A laboratory-scale pyrolysis gasifier and CAP equipment were built. Moreover, the CAP removal efficiency for particles generated from four typical rural domestic waste categories was studied. The results showed that CAP technology considerably increased the efficiency of fine particle removal. However, the removal efficiency for particles released owing to the incineration of wood was only ∼75%. This was because the tar substances formed during wood pyrolysis were attached to the surface of escaping particles, which led to a decrease in their hydrophilicity and particle condensation growth. To address this issue, the improvement in particle hydrophilicity using different surfactants was studied via molecular dynamic simulations. When the increase in water molecule adsorption, surface polarity, and the solid-liquid interaction energy for different surfactants were compared, alkylphenol ethoxylate (OP10) proved to be the most effective surfactant. Finally, the improved CAP technology combined with OP10 was applied to the on-site pyrolysis gasification flue gas treatment. Long term monitoring of the proposed technology revealed that particle removal efficiency remained >94%, exhibiting excellent fine particle removal. The successful application of the proposed technology demonstrates its potential for further application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...