Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuron ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39121859

RESUMEN

Primary familial brain calcification (PFBC) is a genetic neurological disease, yet no effective treatment is currently available. Here, we identified five novel intronic variants in SLC20A2 gene from six PFBC families. Three of these variants increased aberrant SLC20A2 pre-mRNA splicing by altering the binding affinity of splicing machineries to newly characterized cryptic exons, ultimately causing premature termination of SLC20A2 translation. Inhibiting the cryptic-exon incorporation with splice-switching ASOs increased the expression levels of functional SLC20A2 in cells carrying SLC20A2 mutations. Moreover, by knocking in a humanized SLC20A2 intron 2 sequence carrying a PFBC-associated intronic variant, the SLC20A2-KI mice exhibited increased inorganic phosphate (Pi) levels in cerebrospinal fluid (CSF) and progressive brain calcification. Intracerebroventricular administration of ASOs to these SLC20A2-KI mice reduced CSF Pi levels and suppressed brain calcification. Together, our findings expand the genetic etiology of PFBC and demonstrate ASO-mediated splice modulation as a potential therapy for PFBC patients with SLC20A2 haploinsufficiency.

2.
J Hum Genet ; 69(9): 433-440, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38866925

RESUMEN

BACKGROUND: Intronic GAA repeat expansion ([GAA] ≥250) in FGF14 is associated with the late-onset neurodegenerative disorder, spinocerebellar ataxia 27B (SCA27B, GAA-FGF14 ataxia). We aim to determine the prevalence of the GAA repeat expansion in FGF14 in Chinese populations presenting late-onset cerebellar ataxia (LOCA) and evaluate the characteristics of tandem repeat inheritance, radiological features and sympathetic nerve involvement. METHODS: GAA-FGF14 repeat expansion was screened in an undiagnosed LOCA cohort (n = 664) and variations in repeat-length were analyzed in families of confirmed GAA-FGF14 ataxia patients. Brain magnetic resonance imaging (MRI) was used to evaluate the radiological feature in GAA-FGF14 ataxia patients. Clinical examinations and sympathetic skin response (SSR) recordings in GAA-FGF14 patients (n = 16) were used to quantify sympathetic nerve involvement. RESULTS: Two unrelated probands (2/664) were identified. Genetic screening for GAA-FGF14 repeat expansion was performed in 39 family members, 16 of whom were genetically diagnosed with GAA-FGF14 ataxia. Familial screening revealed expansion of GAA repeats in maternal transmissions, but contraction upon paternal transmission. Brain MRI showed slight to moderate cerebellar atrophy. SSR amplitude was lower in GAA-FGF14 patients in pre-symptomatic stage compared to healthy controls, and further decreased in the symptomatic stage. CONCLUSIONS: GAA-FGF14 ataxia was rare among Chinese LOCA cases. Parental gender appears to affect variability in GAA repeat number between generations. Reduced SSR amplitude is a prominent feature in GAA-FGF14 patients, even in the pre-symptomatic stage.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Humanos , Masculino , Femenino , Factores de Crecimiento de Fibroblastos/genética , Persona de Mediana Edad , Adulto , Imagen por Resonancia Magnética , Sistema Nervioso Simpático/fisiopatología , Sistema Nervioso Simpático/patología , Anciano , Linaje , Expansión de Repetición de Trinucleótido/genética , Secuencias Repetidas en Tándem/genética , Degeneraciones Espinocerebelosas
7.
J Mol Med (Berl) ; 100(3): 385-394, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34837498

RESUMEN

Neurogenetic diseases are neurological conditions with a genetic cause (s). There are thousands of neurogenetic diseases, and most of them are incurable. The development of bioinformatics and elucidation of the mechanism of pathogenesis have allowed the development of gene therapy approaches, which show great potential in treating neurogenetic diseases. Viral vectors delivery, antisense oligonucleotides, gene editing, RNA interference, and burgeoning viroid delivery technique are promising gene therapy strategies, and commendable therapeutic effects in the treatment of neurogenetic diseases have been achieved (Fig. 1). This review highlights a sampling of advances in gene therapies for neurogenetic disorders. Fig. 1 Examples of gene therapy strategies used in the treatment of neurogenetic diseases. The schematic diagram shows different gene therapy approaches used for treating a sampling of neurogenetic disorders, such as ASO therapy, gene editing, gene augmentation, and RNA interference.


Asunto(s)
Enfermedades del Sistema Nervioso , Oligonucleótidos Antisentido , Terapia Genética/métodos , Vectores Genéticos/genética , Humanos , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/terapia , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...