RESUMEN
Metal-organic framework (MOF) materials are three-dimensional structures formed by the combination of metal ions and organic ligands. So far, various typical metal organic framework materials have emerged, such as ZIF-8, MOF-5, UIO-66, etc. These traditional MOF materials have the advantages of simple synthesis, high porosity, and high stability, and have great research potential in the field of fluorescence sensing. However, MOF materials with excellent luminescent properties often involve fine regulation of organic ligands to ensure that fluorescence emission can be achieved between metal ions and organic ligands through energy transfer and photo induced electron transfer. The long synthesis cycle and cumbersome preparation process pose challenges for the research of fluorescent MOF materials. Combining MOF materials with luminescent guests is an effective way to prepare simple fluorescent chemical sensors. These luminescent guests include quantum dots, organic dyes, fluorescent nanoparticles, etc. They have the characteristic of high luminescence quantum yield, but high concentrations often lead to aggregation and collision, which in turn cause emission quenching. MOF materials with excellent porosity and specific surface area can serve as an ideal platform for encapsulating luminescent guests and preventing their aggregation. The preparation of MOF@luminescent guest composite material (MOF@LG) is easy to synthesize, which not only effectively improves the poor fluorescence performance of MOFs themselves, but also preserves the excellent fluorescence performance of luminescent guests. Composite materials often have excellent solid-state luminescence performance, making them a good choice for constructing a simple fluorescence sensing platform.
RESUMEN
It was found the expression of progesterone receptor membrane component 2 (PGRMC2) in the histone of epileptic mice was lower than that of normal mice. In this study, we found by the immunofluorescence technique, PGRMC2 was expressed in both astrocytes and neurons of the mouse hippocampus. In addition, the seizure latency and seizure grade of mice in each group were observed after stereotactic injection of the PGRMC2 knockdown virus, PGRMC2 overexpression lentivirus, and related null virus into the hippocampus of mice. It was found that the seizure latency of mice in the PTZ + siPGRMC2 group was prolonged compared with the null virus group. The seizure latency was shortened in the PTZ + PGRMC2 group. The number of grade IV and above seizures in the PTZ + siPGRMC2 group was significantly reduced, while the number of grade IV and above seizures in the PTZ + PGRMC2 group was significantly increased. It was found that the nerve cells in the PTZ + siPGRMC2 group were still intact. In the PTZ + PGRMC2 group, the neural cells were damaged, the intercellular space was widened, and the number of cells was reduced. These findings support that PGRMC2 may be involved in epileptic seizures.
RESUMEN
Atherosclerosis (AS) is an inflammatory arterial disorder that occurs due to the deposition of the excessive lipoprotein under the artery intima, mainly including low-density lipoprotein and other apolipoprotein B-containing lipoproteins. G protein-coupled receptors (GPCRs) play a crucial role in transmitting signals in physiological and pathophysiological conditions. GPCRs recognize inflammatory mediators, thereby serving as important players during chronic inflammatory processes. It has been demonstrated that free fatty acids can function as ligands for various GPCRs, such as free fatty acid receptor (FFAR)1/GPR40, FFAR2/GPR43, FFAR3/GPR41, FFAR4/GPR120, and the lipid metabolite binding glucose-dependent insulinotropic receptor (GPR119). This review discusses GPR43 and its ligands in the pathogenesis of AS, especially focusing on its distinct role in regulating chronic vascular inflammation, inhibiting oxidative stress, ameliorating endothelial dysfunction and improving dyslipidemia. It is hoped that this review may provide guidance for further studies aimed at GPR43 as a promising target for drug development in the prevention and therapy of AS.
RESUMEN
Gastric cancer(GC)is one of the most common gastrointestinal malignant tumors in the world, requiring the development of novel therapeutic agents with reduced toxicity. Rehmannia polysaccharide (RPS) possesses immunomodulatory and anti-tumor properties, yet its efficacy is suboptimal. To enhance its biological activity, we subjected RPS to molecular modifications, resulting in phosphorylated Rehmannia polysaccharides (P-RPS). Using the mixed phosphate method, we synthesized P-RPS and optimized the synthesis conditions through a combination of single-factor and response surface methodologies. In vitro studies on P-RPS's anti-tumor activity showed no direct influence on the viability of GC cells. However, P-RPS induced the transformation of PMA-activated THP-1 cells into the M1 phenotype. We collected conditioned medium (CM) of THP-1 cells to stimulate gastric cancer cells and CM-P-RPS significantly promoted apoptosis of gastric cancer cells and inhibited cell proliferation, and reduced cell migration. Mechanistically, CM-P-RPS inhibits the Wnt/ß-catenin signaling pathway through LGR6, leading to the suppression of tumor growth. Furthermore, P-RPS demonstrated a significant inhibitory effect on tumor growth in vivo, suggesting its potential as a promising therapeutic agent for GC treatment.
Asunto(s)
Proliferación Celular , Polisacáridos , Rehmannia , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Rehmannia/química , Polisacáridos/farmacología , Polisacáridos/química , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Animales , Apoptosis/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Movimiento Celular/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Fosforilación/efectos de los fármacos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
As a water pollutant with excellent solubility, 2,4,6-trinitrophenol (also known as picric acid, PA) poses a potential threat to the natural environment and human health, so it is crucial important to detect PA in water. In this study, a novel composite material (MIL-53(Al)@R6G) was successfully synthesized by encapsulating Rhodamine 6G into a metal-organic frame material, which was used for fluorescence detection of picric acid (PA) in water. The composite exhibits bright yellow fluorescence emission with a fluorescence quantum yield of 58.23 %. In the process of PA detection, the composite has excellent selectivity and anti-interference performance, and PA can significantly quench the fluorescence intensity of MIL-53(Al)@R6G. MIL-53(Al)@R6G has the advantages of fast detection time (20 s), wide linear range (1-100 µM) and low detection limit (4.8 nM). In addition, MIL-53(Al)@R6G has demonstrated its potential for the detection of PA in environmental water samples with satisfactory results.
RESUMEN
In low-permeability coal reservoirs, utilizing the organic solvent N-methyl-2-pyrrolidone (NMP) has emerged as an effective approach to improving the coal pore structure and enhancing coalbed methane productivity. However, the exact mechanisms of how solvent erosion alters functional groups and develops pores remain incompletely understood. This study utilized Fourier transform infrared spectroscopy and low-field nuclear magnetic resonance to assess the impact of NMP on the functional groups and pore structures of lignite, bituminous coal, and anthracite. The results indicate that a 6 h treatment with NMP led to an increased proportion of oxygen-containing functional groups in all coal samples, accompanied by a decrease in hydroxyls and aliphatic hydrocarbons. The aromaticity of the coal samples was enhanced to varying degrees, most notably for lignite. In terms of pore modification, the porosity of lignite and bituminous coal increased by 84.82 and 43.56%, while anthracite experienced a porosity increase of 3.04%, indicating a diminished effectiveness of NMP as the coal rank increased. These findings suggest that NMP selectively dissolves specific organic molecules in coals, thereby enhancing pore connectivity and promoting a transition from micro- to meso- and macropores. These findings highlight the potential of NMP in enhancing coalbed methane production and advance our understanding of the mechanisms behind solvent erosion.
RESUMEN
Residual heavy metal ions in water pose a major hazard to ecology as well as human health, and Cu2+, as the most common heavy metal ion in water bodies, can cause a variety of diseases in human beings with prolonged exposure, therefore, a rational sensing platform is needed for the specific detection of Cu2+. In this work, based on the solvothermal method, we successfully prepared the composite UIO-66@FS by encapsulating the dye fluorescein sodium molecule (FS) with a metal-organic framework material (UIO-66). The composite material has bright fluorescence emission properties with a fluorescence quantum yield of 62.03 %, and the composite material has been used to construct a fluorescence sensing platform for detecting the heavy metal Cu2+ in the aqueous environment. The fluorescence of UIO-66@FS can be greatly quenched by Cu2+, which is visible to the naked eye under UV lamp. The sensing platform is able to withstand environmental interference and has the advantages of high selectivity, excellent sensitivity, fast response, wide linear range (2.5 µM-500 µM), and low detection limit (0.246 µM) in the fluorescence quenching detection of Cu2+. In addition, the sensor has been used to detect Cu2+ in real water samples with satisfactory recoveries. Therefore, this sensing probe can be an excellent candidate for Cu2+ detection and has wonderful potential for real water sample detection.
RESUMEN
CH4 can be separated from low-concentration coal bed methane (LCCBM) by using the hydrate-based gas separation (HBGS) method. To study the contribution of different cyclic organic compounds to the separation of CH4 in LCCBM, an LCCBM hydrate model was constructed. Based on the Monte Carlo and molecular dynamics theory, we simulated the effect of three cyclic organic compounds-cyclopentane (CP), cyclopentanone (CP-one), and cyclopentanol (CP-ol)-on the stability of the LCCBM hydrate at P = 2 MPa, various temperatures, and discussed the structural stability of the hydrate in depth in terms of final snapshots, radial distribution function, mean square displacement, diffusion coefficient, and potential energy change. The results showed that for the CH4-N2 LCCMM gas mixture, CP showed the best facilitation effect compared to the other two cyclic compounds by maintaining the stability of the LCCBM hydrate well at T = 293 K. The promotion effect of CP-one is between CP and CP-ol, and when the temperature increases to T = 293 K, the oxygen atoms in the water molecule can maintain the essential stability of the hydrate structure, although the orderliness decreases significantly. Moreover, the structure of the hydrate model containing CP-ol is destroyed at T = 293 K, and the eventual escape of CH4 and N2 molecules in solution occurs as bubbles. The research results are important for further exploration of the mechanism of action of cyclic promoter molecules with LCCBM hydrate molecules and promoter preferences.
Asunto(s)
Dióxido de Carbono , Metano , Dióxido de Carbono/química , Metano/química , Agua/química , Simulación de Dinámica Molecular , Ciclopentanos , Carbón Mineral , OxígenoRESUMEN
Parkinson's disease (PD) is a common neurodegenerative disease that has a significant impact on people's lives. Early diagnosis is imperative since proper treatment stops the disease's progression. With the rapid development of CAD techniques, there have been numerous applications of computer-aided diagnostic (CAD) techniques in the diagnosis of PD. In recent years, image fusion has been applied in various fields and is valuable in medical diagnosis. This paper mainly adopts a multi-focus image fusion method primarily based on deep convolutional neural networks to fuse magnetic resonance images (MRI) and positron emission tomography (PET) neural photographs into multi-modal images. Additionally, the study selected Alexnet, Densenet, ResNeSt, and Efficientnet neural networks to classify the single-modal MRI dataset and the multi-modal dataset. The test accuracy rates of the single-modal MRI dataset are 83.31%, 87.76%, 86.37%, and 86.44% on the Alexnet, Densenet, ResNeSt, and Efficientnet, respectively. Moreover, the test accuracy rates of the multi-modal fusion dataset on the Alexnet, Densenet, ResNeSt, and Efficientnet are 90.52%, 97.19%, 94.15%, and 93.39%. As per all four networks discussed above, it can be concluded that the test results for the multi-modal dataset are better than those for the single-modal MRI dataset. The experimental results showed that the multi-focus image fusion method according to deep learning can enhance the accuracy of PD image classification.
RESUMEN
The occurrence of epilepsy can increase the incidence of depression, and the risk of epilepsy in the patients with depression is also high, both of which have an adverse effect on the life and the psychology of the patient, which is not conducive to the prognosis of the patients with epilepsy. With lucubrating the function of exosomes and microRNAs, some scholars found that the exosomes and its microRNAs have development prospect in the diagnosis and treatment of the disease. MicroRNAs are involved in the regulation of seizures and depression, as biomarkers, that can significantly improve the management of epileptic patients and play a preventive role in the occurrence of epilepsy and epilepsy depressive disorder. Moreover, due to its regulation to genes, appropriate application of microRNAs may have therapeutic effect on epilepsy and depression with the characteristics of long distance transmission and stability of exosomes, to a certain extent. This provides a great convenience for the diagnosis and treatment of epileptic comorbidity depression.
RESUMEN
A new lignan (T4) and three known lignans (T1, T2, and T3) were isolated from the methanol extract of the roots of Phryma leptostachya using bioassay-guided method, and their structures were identified as phrymarolin I (T1), II (T2), haedoxan A (T3), and methyl 4-((6a-acetoxy-4-(6-methoxybenzo[d][1,3]dioxol-5-yl)tetrahydro-1H,3H-furo[3,4-c]furan-1-yl)oxy)-1-hydroxy-2,2-dimethoxy-5-oxocyclopent-3-ene-1-carboxylate (T4) byNMR and ESI-MS spectral data. Bioassay results revealed that haedoxan A exhibited remarkably high insecticidal activity against Mythimna separata with a stomach toxicity LC50 value of 17.06 mg/L and a topical toxicity LC50 value of 1123.14 mg/L at 24 h, respectively. Phrymarolin I and compound T4 also showed some stomach toxicity against M. separata with KD50 values of 3450.21 mg/L at 4 h and 2807.10 mg/L at 8 h, respectively. In addition, phrymarolin I and haedoxan A exhibited some stomach toxicity against Plutella xylostella with an LC50 value of 1432.05 and 857.28 mg/L at 48 h, respectively. In conclusion, this study demonstrated that lignans from P. leptostachya are promising as a novel class of insecticides or insecticide lead compounds for developing botanical pesticides.
Asunto(s)
Insecticidas/aislamiento & purificación , Lamiales/química , Lignanos/aislamiento & purificación , Animales , Benzodioxoles/química , Benzodioxoles/aislamiento & purificación , Benzodioxoles/farmacología , Brassica/parasitología , Insecticidas/química , Insecticidas/farmacología , Lepidópteros/efectos de los fármacos , Lignanos/química , Lignanos/farmacología , Estructura Molecular , Extractos Vegetales/química , Triticum/parasitologíaRESUMEN
To explore novel high efficiency and low toxicity antitumor agents, a series of dihydroartemisinin-cinnamic acid ester derivatives modified on C-12 and/or C-9 position (s) were synthesized and the in vitro antitumor activities against PC-3, SGC-7901, A549 and MDA-MB-435s cancer cell lines were assessed. The hybrids (3-36) were prepared by esterification of 9α-hydroxyl-dihydroartemisinin (9α-OH DHA), the biotransformation product of dihydroartemisinin (DHA), and cinnamic acid derivatives. Compound 17 (IC50 = 0.20 µM) was the most potent anti-proliferative agent against the human lung carcinoma A549 cells, although it displayed low cytotoxicity on normal hepatic L-02 cells. The mechanism of action of compound 17 was further investigated by analysis of cell apoptosis and intracellular ROS generation. The results indicated that both ROS and ferrous ion contributed to the compound 17-induced cell death. Meanwhile, high intracellular ferrous ion and endogenous oxidative stress in A549 cells made them easier to suffer to compound 17-induced apoptosis. Our promising findings indicated the compound 17 could stand as drug candidate against lung cancer for further investigation.