Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Hum Genet ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866925

RESUMEN

BACKGROUND: Intronic GAA repeat expansion ([GAA] ≥250) in FGF14 is associated with the late-onset neurodegenerative disorder, spinocerebellar ataxia 27B (SCA27B, GAA-FGF14 ataxia). We aim to determine the prevalence of the GAA repeat expansion in FGF14 in Chinese populations presenting late-onset cerebellar ataxia (LOCA) and evaluate the characteristics of tandem repeat inheritance, radiological features and sympathetic nerve involvement. METHODS: GAA-FGF14 repeat expansion was screened in an undiagnosed LOCA cohort (n = 664) and variations in repeat-length were analyzed in families of confirmed GAA-FGF14 ataxia patients. Brain magnetic resonance imaging (MRI) was used to evaluate the radiological feature in GAA-FGF14 ataxia patients. Clinical examinations and sympathetic skin response (SSR) recordings in GAA-FGF14 patients (n = 16) were used to quantify sympathetic nerve involvement. RESULTS: Two unrelated probands (2/664) were identified. Genetic screening for GAA-FGF14 repeat expansion was performed in 39 family members, 16 of whom were genetically diagnosed with GAA-FGF14 ataxia. Familial screening revealed expansion of GAA repeats in maternal transmissions, but contraction upon paternal transmission. Brain MRI showed slight to moderate cerebellar atrophy. SSR amplitude was lower in GAA-FGF14 patients in pre-symptomatic stage compared to healthy controls, and further decreased in the symptomatic stage. CONCLUSIONS: GAA-FGF14 ataxia was rare among Chinese LOCA cases. Parental gender appears to affect variability in GAA repeat number between generations. Reduced SSR amplitude is a prominent feature in GAA-FGF14 patients, even in the pre-symptomatic stage.

2.
J Phys Chem A ; 128(23): 4705-4713, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38829770

RESUMEN

The noncovalent interactions between formamide (FM) and the heteroaromatic compounds (furan and thiophene) were investigated through microwave spectroscopy and theoretical calculations. Each of the investigated complexes exhibits a single rotational spectrum corresponding to the lowest energy structure predicted theoretically. In the detected structures, N-H···O and C-H···O hydrogen bonds dominate the complexation between FM and furan, resulting in a planar configuration. Conversely, a superposed configuration linked by a N-H···π hydrogen bond and C═O···π contact is observed for the FM-thiophene complex. In both cases, hydrogen bonding interactions with N-H as proton donor rank as the dominant forces, and the interaction energy of N-H···O is larger than that of N-H···π. It was found that the electrostatic component is the largest contributor to the attraction between FM and furan, while the dispersion component is the most significant attractive factor in the FM-thiophene complex. These findings highlight the distinct features of hydrogen bonding interactions of amides with heteroaromatics in the studied complexes.

3.
J Chem Phys ; 160(13)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38557843

RESUMEN

The C-H⋯S-S interactions are fundamentally important to understand the stability of biomacromolecules and their binding with small molecules, but they are still underappreciated. Herein, we characterized the C-H⋯S-S interactions in model molecular complexes. The rotational spectra of the complexes of diethyl disulfide with CH2CH2 and CH2CHF were measured and analyzed. All the detected structures are mainly stabilized by a C-H⋯S-S hydrogen bond, providing stabilization energies of 2.3-7.2 kJ mol-1. Incidental C-H⋯π or C-H⋯F interactions enhance the stabilization of the complexes. London dispersion, which accounts for 54%-68% of the total attractions, is the main driving force of stabilization. The provided bonding features of C-H⋯S-S are crucial for understanding the stabilizing role of this type of interaction in diverse processes such as supramolecular recognition, protein stability, and enzyme activity.

4.
J Fungi (Basel) ; 9(12)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38132760

RESUMEN

PURPOSE: The aim of this study is to establish a loop-mediated isothermal amplification (LAMP) method for the rapid detection of vulvovaginal candidiasis (VVC). METHODS: We developed and validated a loop-mediated isothermal amplification (LAMP) method for detecting the most common Candida species associated with VVC, including C. albicans, N. glabratus, C. tropicalis, and C. parapsilosis. We evaluated the specificity, sensitivity, positive predictive value (PPV), negative predictive value (NPV), and Kappa value of the LAMP method to detect different Candida species, using the conventional culture method and internal transcribed spacer (ITS) sequencing as gold standards and smear Gram staining and real-time Rolymerase Chain Reaction (PCR) as controls. RESULTS: A total of 202 cases were enrolled, of which 88 were VVC-positive and 114 were negative. Among the 88 positive patients, the fungal culture and ITS sequencing results showed that 67 cases (76.14%) were associated with C. albicans, 13 (14.77%) with N. glabratus, 5 (5.68%) with C. tropicalis, and 3 (3.41%) with other species. Regarding the overall detection rate, the LAMP method presented sensitivity, specificity, PPV, NPV, and Kappa values of 90.91%, 100%, 100%, 93.4%, and 0.919, respectively. Moreover, the LAMP had a specificity of 100% for C. albicans, N. glabratus, and C. tropicalis, with a sensitivity of 94.03%, 100%, and 80%, respectively. Moreover, the microscopy evaluation had the highest sensitivity, while the real-time PCR was less specific for C. albicans than LAMP. In addition, CHROMagar Candida was inferior to LAMP in detecting non-albicans Candida (NAC) species. CONCLUSIONS: Based on the cost-effective, rapid, and inexpensive characteristics of LAMP, coupled with the high sensitivity and specificity of our VVC-associated Candida detection method, we provided a possibility for the point-of-care testing (POCT) of VVC, especially in developing countries and some laboratories with limited resources.

5.
Analyst ; 148(19): 4820-4828, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37606537

RESUMEN

Cervical cancer is a significant global health issue primarily caused by high-risk types of human papillomavirus (HPV). Recent studies have reported an association between Trichomonas vaginalis (T. vaginalis) infections and HPV infections, highlighting the importance of simultaneously detecting these pathogens for effective cervical cancer risk management. However, current methods for detecting both T. vaginalis and HPV are limited. In this study, we present a novel approach using a microfluidic-chip-based system with loop-mediated isothermal amplification (LAMP) for the rapid and parallel detection of T. vaginalis, HPV16, HPV18, and HPV52 in a reagent-efficient and user-friendly manner. Compared to conventional LAMP assays in tubes, our system exhibits enhanced sensitivity with values of 2.43 × 101, 3.00 × 102, 3.57 × 101, and 3.60 × 102 copies per reaction for T. vaginalis, HPV16, HPV18, and HPV52, respectively. Additionally, we validated the performance of our chip by testing 47 clinical samples, yielding results consistent with the diagnostic methods used by the hospital. Therefore, our system not only offers a promising solution for concurrent diagnosis of T. vaginalis and HPV infections, particularly in resource-limited areas, due to its cost-effectiveness, ease of use, and rapid and accurate detection performance, but can also contribute to future research on the co-infection of these two pathogens. Moreover, the system possesses the capability to simultaneously detect up to 22 different types of pathogens, making it applicable across a wide range of domains such as diagnostics, food safety, and water monitoring.


Asunto(s)
Infecciones por Papillomavirus , Trichomonas vaginalis , Neoplasias del Cuello Uterino , Femenino , Humanos , Trichomonas vaginalis/genética , Virus del Papiloma Humano , Infecciones por Papillomavirus/diagnóstico , Neoplasias del Cuello Uterino/diagnóstico , Microfluídica , Sensibilidad y Especificidad , Técnicas de Amplificación de Ácido Nucleico/métodos , Papillomavirus Humano 16 , Papillomavirus Humano 18/genética
6.
Biosensors (Basel) ; 13(5)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37232920

RESUMEN

Rapid identification of Candida species is significant for the diagnosis of vulvovaginal candidiasis (VVC). An integrated and multi-target system for the rapid, high-specificity, and high-sensitivity detection of four Candida species was developed. The system consists of a rapid sample processing cassette and a rapid nucleic acid analysis device. The cassette could process the Candida species to release nucleic acids in 15 min. The released nucleic acids were analyzed by the device as fast as within 30 min, using the loop-mediated isothermal amplification method. The four Candida species could be simultaneously identified, with each reaction using only 1.41 µL of reaction mixture, which was low cost. The RPT (rapid sample processing and testing) system could detect the four Candida species with high sensitivity (<2 CFU/reaction) and high specificity. The system also processed and analyzed 32 clinical samples, giving the results with high clinical sensitivity and specificity. Hence, the system was a significant and effective platform for the diagnosis of VVC. Furthermore, the period of validity of the reagents and chips used in the system was >90 days, and the system could also be used for the detection of bacteria.


Asunto(s)
Candidiasis Vulvovaginal , Ácidos Nucleicos , Femenino , Humanos , Candidiasis Vulvovaginal/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/métodos , Sensibilidad y Especificidad
7.
Diagnostics (Basel) ; 13(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36832135

RESUMEN

Lung cancer remains the most commonly diagnosed cancer and the leading cause of death from cancer. Recent research shows that the human eye can provide useful information about one's health status, but few studies have revealed that the eye's features are associated with the risk of cancer. The aims of this paper are to explore the association between scleral features and lung neoplasms and develop a non-invasive artificial intelligence (AI) method for detecting lung neoplasms based on scleral images. A novel instrument was specially developed to take the reflection-free scleral images. Then, various algorithms and different strategies were applied to find the most effective deep learning algorithm. Ultimately, the detection method based on scleral images and the multi-instance learning (MIL) model was developed to predict benign or malignant lung neoplasms. From March 2017 to January 2019, 3923 subjects were recruited for the experiment. Using the pathological diagnosis of bronchoscopy as the gold standard, 95 participants were enrolled to take scleral image screens, and 950 scleral images were fed to AI analysis. Our non-invasive AI method had an AUC of 0.897 ± 0.041(95% CI), a sensitivity of 0.836 ± 0.048 (95% CI), and a specificity of 0.828 ± 0.095 (95% CI) for distinguishing between benign and malignant lung nodules. This study suggested that scleral features such as blood vessels may be associated with lung cancer, and the non-invasive AI method based on scleral images can assist in lung neoplasm detection. This technique may hold promise for evaluating the risk of lung cancer in an asymptomatic population in areas with a shortage of medical resources and as a cost-effective adjunctive tool for LDCT screening at hospitals.

8.
Sci China Life Sci ; 66(7): 1554-1568, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36802318

RESUMEN

The uplift of the Tibetan Plateau significantly altered the geomorphology and climate of the Euroasia by creating large mountains and rivers. Fishes are more likely to be affected relative to other organisms, as they are largely restricted to river systems. Faced with the rapidly flowing water in the Tibetan Plateau, a group of catfish has evolved greatly enlarged pectoral fins with more numbers of fin-rays to form an adhesive apparatus. However, the genetic basis of these adaptations in Tibetan catfishes remains elusive. In this study, we performed comparative genomic analyses based on the chromosome-level genome of Glyptosternum maculatum in family Sisoridae and detected some proteins with conspicuously high evolutionary rates in particular in genes involved in skeleton development, energy metabolism, and hypoxia response. We found that the hoxd12a gene evolved faster and a loss-of-function assay of hoxd12a supports a potential role for this gene in shaping the enlarged fins of these Tibetan catfishes. Other genes with amino acid replacements and signatures of positive selection included proteins involved in low temperature (TRMU) and hypoxia (VHL) responses. Functional assays reveal that the G. maculatumTRMU allele generates more mitochondrial ATP than the ancestral allele found in low-altitude fishes. Functional assays of VHL alleles suggest that the G. maculatum allele has lower transactivation activity than the low-altitude forms. These findings provide a window into the genomic underpinnings of physiological adaptations that permit G. maculatum to survive in the harsh environment of the Tibetan Himalayas that mirror those that are convergently found in other vertebrates such as humans.


Asunto(s)
Bagres , Humanos , Animales , Bagres/genética , Tibet , Adaptación Fisiológica/genética , Aclimatación , Hipoxia/genética , Altitud
10.
Mol Biol Evol ; 40(3)2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36805964

RESUMEN

Freeze tolerance, the ability of an organism to survive internal ice formation, is a striking survival strategy employed by some ectotherms living in cold environments. However, the genetic bases of this remarkable adaptation are largely unknown. The Amur sleeper (Perccottus glenii), the only known freeze-tolerant fish species, can overwinter with its entire body frozen in ice. Here, we sequenced the chromosome-level genome of the Amur sleeper and performed comparative genomic, transcriptomic, and metabolomic analyses to investigate its strategies for surviving freezing. Evolutionary analysis suggested that the Amur sleeper diverged from its closest non-cold-hardy relative about 15.07 million years ago and has experienced a high rate of protein evolution. Transcriptomic and metabolomic data identified a coordinated and tissue-specific regulation of genes and metabolites involved in hypometabolism, cellular stress response, and cryoprotectant accumulation involved in freezing and thawing. Several genes show evidence of accelerated protein sequence evolution or family size expansion were found as adaptive responses to freezing-induced stresses. Specifically, genetic changes associated with cytoskeleton stability, cryoprotectant synthesis, transmembrane transport, and neuroprotective adaptations were identified as potentially key innovations that aid in freezing survival. Our work provides valuable resources and opportunities to unveil the molecular adaptations supporting freeze tolerance in ectothermic vertebrates.


Asunto(s)
Hielo , Perciformes , Animales , Congelación , Multiómica , Vertebrados , Adaptación Fisiológica/fisiología , Aclimatación/genética
11.
Sci China Life Sci ; 66(6): 1379-1391, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36648612

RESUMEN

High hydrostatic pressure, low temperature, and scarce food supply are the major factors that limit the survival of vertebrates in extreme deep-sea environments. Here, we constructed a high-quality genome of the deep-sea Muddy arrowtooth eel (MAE, Ilyophis brunneus, captured below a depth of 3,500 m) by using Illumina, PacBio, and Hi-C sequencing. We compare it against those of shallow-water eel and other outgroups to explore the genetic basis that underlies the adaptive evolution to deep-sea biomes. The MAE genome was estimated to be 1.47 Gb and assembled into 14 pseudo-chromosomes. Phylogenetic analyses indicated that MAE diverged from its closely related shallow-sea species, European eel, ∼111.9 Mya and experienced a rapid evolution. The genome evolutionary analyses primarily revealed the following: (i) under high hydrostatic pressure, the positively selected gene TUBGCP3 and the expanded family MLC1 may improve the cytoskeleton stability; ACOX1 may enhance the fluidity of cell membrane and maintain transport activity; the expansion of ABCC12 gene family may enhance the integrity of DNA; (ii) positively selected HARS likely maintain the transcription ability at low temperatures; and (iii) energy metabolism under a food-limited environment may be increased by expanded and positively selected genes in AMPK and mTOR signaling pathways.


Asunto(s)
Adaptación Fisiológica , Anguilas , Animales , Filogenia , Adaptación Fisiológica/genética , Anguilas/genética , Citoesqueleto , Cromosomas/genética
12.
Neurosci Bull ; 39(4): 659-674, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36469195

RESUMEN

Primary familial brain calcification (PFBC) is an inherited neurodegenerative disorder mainly characterized by progressive calcium deposition bilaterally in the brain, accompanied by various symptoms, such as dystonia, ataxia, parkinsonism, dementia, depression, headaches, and epilepsy. Currently, the etiology of PFBC is largely unknown, and no specific prevention or treatment is available. During the past 10 years, six causative genes (SLC20A2, PDGFRB, PDGFB, XPR1, MYORG, and JAM2) have been identified in PFBC. In this review, considering mechanistic studies of these genes at the cellular level and in animals, we summarize the pathogenesis and potential preventive and therapeutic strategies for PFBC patients. Our systematic analysis suggests a classification for PFBC genetic etiology based on several characteristics, provides a summary of the known composition of brain calcification, and identifies some potential therapeutic targets for PFBC.


Asunto(s)
Encefalopatías , Animales , Encefalopatías/genética , Encefalopatías/terapia , Receptor de Retrovirus Xenotrópico y Politrópico , Encéfalo/patología
15.
Front Chem ; 10: 946157, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105308

RESUMEN

Identifying new biomarkers is necessary and important to diagnose and treat malignant lung cancer. However, existing protein marker detection methods usually require complex operation steps, leading to a lag time for diagnosis. Herein, we developed a rapid, minimally invasive, and convenient nucleic acid biomarker recognition method, which enabled the combined specific detection of 11 lung cancer typing markers in a microliter reaction system after only one sampling. The primers for the combined specific detection of 11 lung cancer typing markers were designed and screened, and the microfluidic chip for parallel detection of the multiple markers was designed and developed. Furthermore, a miniaturized microfluidic-based analyzer was also constructed. By developing a microfluidic chip and a miniaturized nucleic acid analyzer, we enabled the detection of the mRNA expression levels of multiple biomarkers in rice-sized tissue samples. The miniaturized nucleic acid analyzer could detect ≥10 copies of nucleic acids. The cell volume of the typing reaction on the microfluidic chip was only 0.94 µL, less than 1/25 of that of the conventional 25-µL Eppendorf tube PCR method, which significantly reduced the testing cost and significantly simplified the analysis of multiple biomarkers in parallel. With a simple injection operation and reverse transcription loop-mediated isothermal amplification (RT-LAMP), real-time detection of 11 lung cancer nucleic acid biomarkers was performed within 45 min. Given these compelling features, 86 clinical samples were tested using the miniaturized nucleic acid analyzer and classified according to the cutoff values of the 11 biomarkers. Furthermore, multi-biomarker analysis was conducted by a machine learning model to classify different subtypes of lung cancer, with an average area under the curve (AUC) of 0.934. This method shows great potential for the identification of new nucleic acid biomarkers and the accurate diagnosis of lung cancer.

16.
Genome Biol Evol ; 14(8)2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35866587

RESUMEN

Harsh environments provide opportunities to study how different species adapt, at the molecular level, to similar environmental stressors. High hydrostatic pressure, low temperature, and absence of sunlight in the deep-sea environment are challenging conditions for gene expression, cell morphology and vision. Adaptation of fish to this environment appears independently in at least 22 orders of fish, but it remains uncertain whether these adaptations represent convergent evolution. In this study, we performed comparative genomic analysis of 80 fish species to determine genetic evidences for adaptations to the deep-sea environment. The 80 fishes were divided into six groups according to their order. Positive selection and convergent evolutionary analysis were performed and functional enrichment analysis of candidate genes was performed. Positively selected genes (pik3ca, pik3cg, vcl and sphk2) were identified to be associated with the cytoskeletal response to mechanical forces and gene expression. Consistent signs of molecular convergence genes (grk1, ednrb, and nox1) in dark vision, skin color, and bone rarefaction were revealed. Functional assays of Grk1 showed that the convergent sites improved dark vision in deep-sea fish. By identifying candidate genes and functional profiles potentially involved in cold, dark, and high-pressure responses, the results of this study further enrich the understanding of fish adaptations to deep-sea environments.


Asunto(s)
Adaptación Fisiológica , Peces , Aclimatación/genética , Adaptación Fisiológica/genética , Animales , Frío , Evolución Molecular , Peces/genética , Visión Ocular
17.
Biosens Bioelectron ; 203: 114028, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35114465

RESUMEN

Pressure-sensing capability is essential for flexible electronic devices, which require high sensitivity and a wide detection range to simplify the system. However, the template-based pressure sensor is powerless to detect high pressure due to the rapid deformation saturation of microstructures. Herein, we demonstrated that a nature-inspired hierarchical branching (HB) structure can effectively address this problem. Finite element analysis demonstrates that the HB structure permits a step-by-step mobilization of microstructure deformation, resulting in a dramatically improved sensitivity (up to 2 orders of magnitude) when compared with the traditional monolayer structure. Experiments show that the HB structure enables pressure sensors to have a lower elastic modulus (1/3 of that of monolayer sensors), a high sensitivity of 13.1 kPa-1 (almost 14 times higher than the monolayer sensor), and a wide dynamic range (0-800 kPa, the minimum detection pressure is 1.6 Pa). The maximum frequency that the sensor can detect is 250 Hz. The response/recovery time is 0.675/0.55 ms respectively. Given this performance, the HB sensor enables high-resolution detection of the weak radial artery pulse wave characteristics in different states, indicating its potential to noninvasively reveal cardiovascular status and the effectiveness of related interventions, such as exercise and drug intervention. As a proof of concept, we also verified that the HB sensor can serve as a versatile platform to support diverse applications from low to high pressure.


Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Electrónica , Análisis de Elementos Finitos , Presión
18.
Anal Chem ; 94(6): 2926-2933, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35107980

RESUMEN

Recombinase polymerase amplification (RPA) is a useful pathogen identification method. Several label-free detection methods for RPA amplicons have been developed in recent years. However, these methods still lack sensitivity, specificity, efficiency, or simplicity. In this study, we propose a rapid, highly sensitive, and label-free pathogen assay system based on a solid-phase self-interference RPA chip (SiSA-chip) and hyperspectral interferometry. The SiSA-chips amplify and capture RPA amplicons on the chips, rather than irrelevant amplicons such as primer dimers, and the SiSA-chips are then analysed by hyperspectral interferometry. Optical length increases of SiSA-chips are used to demonstrate RPA detection results, with a limit of detection of 1.90 nm. This assay system can detect as few as six copies of the target 18S rRNA gene of Plasmodium falciparum within 20 min, with a good linear relationship between the detection results and the concentration of target genes (R2 = 0.9903). Single nucleotide polymorphism (SNP) genotyping of the dhfr gene of Plasmodium falciparum is also possible using the SiSA-chip, with as little as 1% of mutant gene distinguished from wild-type loci (m/wt). This system offers a high-efficiency (20 min), high-sensitivity (6 copies/reaction), high-specificity (1% m/wt), and low-cost (∼1/50 of fluorescence assays for RPA) diagnosis method for pathogen DNA identification. Therefore, this system is promising for fast identification of pathogens to help diagnose infectious diseases, including SNP genotyping.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Recombinasas , Interferometría , Técnicas de Amplificación de Ácido Nucleico/métodos , Nucleotidiltransferasas , Plasmodium falciparum/genética , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...