Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 253: 114664, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36807059

RESUMEN

Agricultural soil contamination by pesticide residues has become a serious issue of increasing concern due to their high persistence and toxicity to non-target species. However, as the world's largest peach producer, national scale surveys on pesticide residues in peach orchard soils are scarce in China. In this study, a target and suspect screening method covering over 200 pesticides commonly used in peach orchards was developed using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry in MSE. An identification strategy using different data processing parameters was developed to identify the pesticide occurrence in soil. The method was applied to soil samples from typical peach orchards in 12 regions across China. The present work also discusses in detail the frequency of occurrence, concentration of pesticides, spatial distribution of multiresidues, and relationship between pesticide occurrence and soil properties. In the tested soil samples, 21 herbicides (level 1), 31 fungicides (level 2a), 24 insecticides (level 2a), and 3 growth regulators (level 2a) were identified. The total concentrations of quantifiable herbicides in the soil samples ranged from 1.05 to 327 ng/g. Only in 5.4% of the soil samples, no pesticide residues were present. By contrast, more than 86% of the total contained multiple residues. This study represents the first large-scale survey of pesticides in soil from peach orchards and provides comprehensive and accurate information on the pesticide residue status for risk assessment.


Asunto(s)
Herbicidas , Residuos de Plaguicidas , Plaguicidas , Prunus persica , Residuos de Plaguicidas/análisis , Espectrometría de Masas/métodos , Plaguicidas/análisis , Cromatografía Liquida , Cromatografía Líquida de Alta Presión , Herbicidas/análisis , Suelo
2.
J Hazard Mater ; 443(Pt A): 130201, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36283215

RESUMEN

The comprehensive effect of exogenous pollutants on the dispersal and abundance of antibiotic-resistance genes (ARGs) in the phycosphere, bacterial community and algae-bacteria interaction remains poorly understood. We investigated community structure and abundance of ARGs in free-living (FL) and particle-attached (PA) bacteria in the phycosphere under nanoparticles (silver nanoparticles (AgNPs) and hematite nanoparticles (HemNPs)) and antibiotics (tetracycline and sulfadiazine) stress using high-throughput sequencing and real-time quantitative PCR. Meanwhile, the intrinsic connection of algae-bacteria interaction was explored by transcriptome and metabolome. The results showed that the relative abundance of sulfonamide and tetracycline ARGs in PA and FL bacteria increased 103-129 % and 112-134 %, respectively, under combined stress of nanoparticles and antibiotics. Antibiotics have a greater effect on ARGs than nanoparticles at environmentally relevant concentrations. Proteobacteria, Firmicutes, and Bacteroidetes, as the primary potential hosts of ARGs, were the dominant phyla. Lifestyle, i.e., PA and FL, significantly determined the abundance of ARGs and bacterial communities. Moreover, algae can provide bacteria with nutrients (carbohydrates and amino acids), and can also produce antibacterial substances (fatty acids). This algal-bacterial interaction may indirectly affect the distribution and abundance of ARGs. These findings provide new insights into the distribution and dispersal of ARGs in microalgae-bacteria symbiotic systems.


Asunto(s)
Nanopartículas del Metal , Microalgas , Antibacterianos/farmacología , Antibacterianos/análisis , Microalgas/genética , Genes Bacterianos , Plata/toxicidad , Bacterias/genética , Farmacorresistencia Microbiana/genética , Tetraciclinas
3.
Environ Pollut ; 315: 120368, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36216179

RESUMEN

ZnO nanoparticles (ZnO NPs) have been widely used in several fields, and they have the potential to be a novel fertilizer to promote plant growth. For the effective use of ZnO NPs, it is necessary to understand their influence mechanisms and key interactions with the soil physical and biological environment. In this review, we summarize the fate and transport of ZnO NPs applied via soil treatment or foliar spray in plant-soil systems and discuss their positive regulation mechanisms in plants and microbes. The latest research shows that the formation, bioavailability, and location of ZnO NPs experience complicated changes during the transport in soil-plant systems and that this depends on many factors. ZnO NPs can improve plant photosynthesis, nutrient element uptake, enzyme activity, and the related gene expression as well as modulate carbon/nitrogen metabolism, secondary metabolites, and the antioxidant systems in plants. Several microbial groups related to plant growth, disease biocontrol, and nutrient cycling in soil can be altered with ZnO NP treatment. In this work, we present a systematic comparison between ZnO NP fertilizer and conventional zinc salt fertilizer. We also fill several knowledge gaps in current studies with the hope of providing guidance for future research.


Asunto(s)
Contaminantes del Suelo , Óxido de Zinc , Óxido de Zinc/metabolismo , Suelo , Fertilizantes , Contaminantes del Suelo/análisis , Raíces de Plantas/metabolismo , Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...