Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202409079, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874984

RESUMEN

Despite the widespread investigations on the M-N-C type single atom catalysts (SACs) for oxygen evolution reaction (OER), an internal conflict between its intrinsic thermodynamically structural instability and apparent catalytic steadiness has long been ignored. Clearly unfolding this contradiction is necessary and meaningful for understanding the real structure-property relation of SACs. Herein, by using the well-designed pH-dependent metal leaching experiments and X-ray absorption spectroscopy, an unconventional structure reconstruction of M-N-C catalyst during OER process was observed. Combining with density functional theory calculations, the initial Ni-N coordination is easily broken in the presence of adsorbed OH*, leading to favorable formation of Ni-O coordination. The formed Ni-O works stably as the real active center for OER catalysis in alkaline media but unstably in acid, which clearly explains the existing conflict. Unveiling the internal contradiction between structural instability and catalytic steadiness provides valuable insights for rational design of single atom OER catalysts.

2.
Chem Sci ; 15(9): 3290-3299, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38425524

RESUMEN

Multi-addressable molecular switches with high sophistication are creating intensive interest, but are challenging to control. Herein, we incorporated ring-chain dynamic covalent sites into azoquinoline scaffolds for the construction of multi-responsive and multi-state switching systems. The manipulation of ring-chain equilibrium by acid/base and dynamic covalent reactions with primary/secondary amines allowed the regulation of E/Z photoisomerization. Moreover, the carboxyl and quinoline motifs provided recognition handles for the chelation of metal ions and turning off photoswitching, with otherwise inaccessible Z-isomer complexes obtained via the change of stimulation sequence. Particularly, the distinct metal binding behaviors of primary amine and secondary amine products offered a facile way for modulating E/Z switching and dynamic covalent reactivity. As a result, multiple control of azoarene photoswitches was accomplished, including light, pH, metal ions, and amine nucleophiles, with interplay between diverse stimuli further enabling addressable multi-state switching within reaction networks. The underlying structural and mechanistic insights were elucidated, paving the way for the creation of complex switching systems, molecular assemblies, and intelligent materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...