Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros













Intervalo de año de publicación
1.
Vopr Virusol ; 69(2): 101-118, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38843017

RESUMEN

The family Orthomyxoviridae consists of 9 genera, including Alphainfluenza virus, which contains avian influenza viruses. In two subtypes H5 and H7 besides common low-virulent strains, a specific type of highly virulent avian virus have been described to cause more than 60% mortality among domestic birds. These variants of influenza virus are usually referred to as «avian influenza virus¼. The difference between high (HPAI) and low (LPAI) virulent influenza viruses is due to the structure of the arginine-containing proteolytic activation site in the hemagglutinin (HA) protein. The highly virulent avian influenza virus H5 was identified more than 100 years ago and during this time they cause outbreaks among wild and domestic birds on all continents and only a few local episodes of the disease in humans have been identified in XXI century. Currently, a sharp increase in the incidence of highly virulent virus of the H5N1 subtype (clade h2.3.4.4b) has been registered in birds on all continents, accompanied by the transmission of the virus to various species of mammals. The recorded global mortality rate among wild, domestic and agricultural birds from H5 subtype is approaching to the level of 1 billion cases. A dangerous epidemic factor is becoming more frequent outbreaks of avian influenza with high mortality among mammals, in particular seals and marine lions in North and South America, minks and fur-bearing animals in Spain and Finland, domestic and street cats in Poland. H5N1 avian influenza clade h2.3.4.4b strains isolated from mammals have genetic signatures of partial adaptation to the human body in the PB2, NP, HA, NA genes, which play a major role in regulating the aerosol transmission and the host range of the virus. The current situation poses a real threat of pre-adaptation of the virus in mammals as intermediate hosts, followed by the transition of the pre-adapted virus into the human population with catastrophic consequences.


Asunto(s)
Aves , Brotes de Enfermedades , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Humanos , Aves/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Gripe Aviar/epidemiología , Gripe Aviar/transmisión , Gripe Humana/epidemiología , Gripe Humana/virología , Gripe Humana/mortalidad , Virulencia
2.
Vopr Virusol ; 67(5): 357-384, 2022 11 19.
Artículo en Ruso | MEDLINE | ID: mdl-36515283

RESUMEN

130 years ago, in 1892, our great compatriot Dmitry Iosifovich Ivanovsky (18641920) discovered a new type of pathogen viruses. Viruses have existed since the birth of life on Earth and for more than three billion years, as the biosphere evolved, they are included in interpopulation interactions with representatives of all kingdoms of life: archaea, bacteria, protozoa, algae, fungi, plants, invertebrates, and vertebrates, including the Homo sapiens (Hominidae, Homininae). Discovery of D.I. Ivanovsky laid the foundation for a new science virology. The rapid development of virology in the 20th century was associated with the fight against emerging and reemerging infections, epidemics (epizootics) and pandemics (panzootics) of which posed a threat to national and global biosecurity (tick-borne and other encephalitis, hemorrhagic fevers, influenza, smallpox, poliomyelitis, HIV, parenteral hepatitis, coronaviral and other infections). Fundamental research on viruses created the basis for the development of effective methods of diagnostics, vaccine prophylaxis, and antiviral drugs. Russian virologists continue to occupy leading positions in some priority areas of modern virology in vaccinology, environmental studies oz zoonotic viruses, studies of viral evolution in various ecosystems, and several other areas. A meaningful combination of theoretical approaches to studying the evolution of viruses with innovative methods for studying their molecular genetic properties and the creation of new generations of vaccines and antiviral drugs on this basis will significantly reduce the consequences of future pandemics or panzootics. The review presents the main stages in the formation and development of virology as a science in Russia with an emphasis on the most significant achievements of soviet and Russian virologists in the fight against viral infectious diseases.


Asunto(s)
Gripe Humana , Virus , Animales , Humanos , Aniversarios y Eventos Especiales , Ecosistema , Virus/genética , Antivirales/uso terapéutico , Pandemias/prevención & control , Virología/historia
3.
Vopr Virusol ; 66(2): 112-122, 2021 05 15.
Artículo en Ruso | MEDLINE | ID: mdl-33993681

RESUMEN

Emerging and reemerging infections pose a grave global health threat. The emergence of the SARS-CoV-2 virus and the resulting COVID-19 pandemic have demonstrated the importance of studying of zoonotic viruses directly in natural foci. For SARS-like coronaviruses, as well as for many other zoonotic pathogens (including hemorrhagic fevers and rabies agents), the main reservoir are horseshoe bats (Rhinolophus spp.), which are widely distributed in Eurasia and Africa. Their range also covers the southern regions of Russia, including the North Caucasus and Crimea. Large colonies of these animals are located on the territory of Sochi National Park (SNP; subtropical zone of Krasnodar Territory, Greater Sochi region, North Caucasus). In total, according to long-term observations, up to 23 species of bats were registered here, including the great (Rh. ferrumequinum), the lesser (Rh. hipposideros), and the Mediterranean (Rh. euryale) horseshoe bats.This review provides information on zoonotic viruses associated with species of bats distributed in the subtropical zone of Krasnodar Territory of Russia, and analyzes their possible role as a natural reservoir of emerging and reemerging infections. Studying the circulation of zoonotic viruses in bats is an important element of monitoring viral populations in natural foci.


Asunto(s)
Quirópteros/virología , Reservorios de Enfermedades , Pandemias , SARS-CoV-2 , Zoonosis Virales , Animales , COVID-19/epidemiología , COVID-19/transmisión , Humanos , Zoonosis Virales/epidemiología , Zoonosis Virales/transmisión
4.
Vopr Virusol ; 65(2): 62-70, 2020.
Artículo en Ruso | MEDLINE | ID: mdl-32515561

RESUMEN

Since the early 2000s, three novel zooanthroponous coronaviruses (Betacoronavirus) have emerged. The first outbreak of infection (SARS) caused by SARS-CoV virus occurred in the fall of 2002 in China (Guangdong Province). A second outbreak (MERS) associated with the new MERS-CoV virus appeared in Saudi Arabia in autumn 2012. The third epidemic, which turned into a COVID-19 pandemic caused by SARS-CoV-2 virus, emerged in China (Hubei Province) in the autumn 2019. This review focuses on ecological and genetic aspects that lead to the emergence of new human zoanthroponous coronaviruses. The main mechanism of adaptation of zoonotic betacoronaviruses to humans is to changes in the receptor-binding domain of surface protein (S), as a result of which it gains the ability to bind human cellular receptors of epithelial cells in respiratory and gastrointestinal tract. This process is caused by the high genetic diversity and variability combined with frequent recombination, during virus circulation in their natural reservoir - bats (Microchiroptera, Chiroptera). Appearance of SARS-CoV, SARS-CoV-2 (subgenus Sarbecovirus), and MERS (subgenus Merbecovirus) viruses is a result of evolutionary events occurring in bat populations with further transfer of viruses to the human directly or through the intermediate vertebrate hosts, ecologically connected with bats. This review is based on the report at the meeting «Coronavirus - a global challenge to science¼ of the Scientific Council «Life Science¼ of the Russian Academy of Science: Lvov D.K., Alkhovsky S.V., Burtseva E.I. COVID-19 pandemic sources: origin, biology and genetics of coronaviruses of SARS-CoV, SARS-CoV-2, MERS-CoV (Conference hall of Presidium of RAS, 14 Leninsky Prospect, Moscow, Russia. April 16, 2020).


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/epidemiología , Pandemias , Neumonía Viral/epidemiología , Glicoproteína de la Espiga del Coronavirus/genética , Zoonosis/epidemiología , Enzima Convertidora de Angiotensina 2 , Animales , Betacoronavirus/clasificación , Betacoronavirus/patogenicidad , COVID-19 , Quirópteros/virología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Ecología , Evolución Molecular , Expresión Génica , Mutación , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Filogenia , Filogeografía , Neumonía Viral/transmisión , Neumonía Viral/virología , Virus Reordenados/clasificación , Virus Reordenados/genética , Virus Reordenados/patogenicidad , Receptores Virales/genética , Receptores Virales/metabolismo , Recombinación Genética , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo , Zoonosis/transmisión , Zoonosis/virología
5.
Vopr Virusol ; 65(1): 6-15, 2020.
Artículo en Ruso | MEDLINE | ID: mdl-32496715

RESUMEN

Results of analysis of phylogenetic, virological, epidemiological, ecological, clinical data of COVID-19 outbreaks in Wuhan, China (PRC) in comparison with SARS-2002 and MERS-2012 outbreaks allow to conclude: - the etiological agent of COVID-19 is coronavirus (2019-CoV), phylogenetically close to the SARS-CoV, isolated from human, and SARS-related viruses isolated from bats (SARS-related bat CoV viruses). These viruses belong to the Sarbecovirus subgenus, Betacoronavirus genus, Orthocoronavirinae subfamily, Coronaviridae family (Cornidovirinea: Nidovirales). COVID-19 is a variant of SARS-2002 and is different from MERS-2012 outbreak, which were caused by coronavirus belonged to the subgenus Merbecovirus of the same genus; - according to the results of phylogenetic analysis of 35 different betacoronaviruses, isolated from human and from wild animals in 2002-2019, the natural source of COVID-19 and SARS-CoV (2002) is bats of Rhinolophus genus (Rhinolophidae) and, probably, some species of other genera. An additional reservoir of the virus could be an intermediate animal species (snakes, civet, hedgehogs, badgers, etc.) that are infected by eating of infected bats. SARS-like coronaviruses circulated in bats in the interepidemic period (2003-2019); - seasonal coronaviruses (subgenus Duvinacovirus, Alphacoronavirus) are currently circulating (November 2019 - January 2020) in the European part of Russia, Urals, Siberia and the Far East of Russia, along with the influenza viruses A(H1N1)pdm09, A(H3N2), and В, as well as six other respiratory viruses (HPIV, HAdV, HRSV, HRV, HBoV, and HMPV).


Asunto(s)
Betacoronavirus/clasificación , Infecciones por Coronavirus/epidemiología , Pandemias , Filogenia , Neumonía Viral/epidemiología , Infecciones del Sistema Respiratorio/epidemiología , Animales , Betacoronavirus/genética , Betacoronavirus/patogenicidad , COVID-19 , China/epidemiología , Quirópteros/virología , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/fisiopatología , Infecciones por Coronavirus/transmisión , Reservorios de Enfermedades/virología , Monitoreo Epidemiológico , Erizos/virología , Humanos , Mustelidae/virología , Neumonía Viral/diagnóstico , Neumonía Viral/fisiopatología , Neumonía Viral/transmisión , Salud Pública/estadística & datos numéricos , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/fisiopatología , Infecciones del Sistema Respiratorio/transmisión , Federación de Rusia/epidemiología , SARS-CoV-2 , Serpientes/virología , Viverridae/virología
6.
Vopr Virusol ; 65(5): 243-258, 2020 11 14.
Artículo en Ruso | MEDLINE | ID: mdl-33533208

RESUMEN

The possible formation of population gene pools of zoonotic viruses with a respiratory route of transmission and a possibility of a pandemic at different stages of biosphere evolution is analyzed. Forming of Poxviruses  (Entomopoxvirinae) gene pool could be the beginning of transformation from Plants to Arthropoda (Carbon - 375 million years ago) with further evolution connected with Rodentia (Pliocene - 75-70 million years ago) and further separation of genera (500-300 thousand years ago), and respiratory transmission (epidemics) between humans (10-2 thousand years BC). Smallpox comeback would be possible. Orthomyxoviruses relicts (genus Isavirus) were possibly connected with Ichthya (Silurian - 500-410 million years ago), and then close interaction with Aves (the Cretaceous, 125-110 million years ago) with the division of genera and respiratory transmission (epidemics) between humans (10-2 thousand BC). Next pandemic of influenza A could be catastrophic in terms of the number of victims and economic damage.Coronaviruses formed a gene pool by interaction with Amphibia (subfamily Letovirinae) and then with Chiroptera in Tertiary (110-75 million years ago) with transformation to Artiodactyla (Eocene - 70-60 million years ago), and only 10-2 thousand years BC acquired the ability to a respiratory transmission and became Alphaviruses, a seasonal infection of humans. A similar situation is possible in the near future with SARS-CoV-2. Pandemics associated with zoonoses even more serious than COVID-19 are likely. Constant monitoring of  populational gene pools of zoonotic viruses is necessary.


Asunto(s)
COVID-19/genética , Reservorios de Enfermedades/virología , Evolución Molecular , Pool de Genes , SARS-CoV-2/genética , Zoonosis/genética , Anfibios/virología , Animales , COVID-19/epidemiología , COVID-19/transmisión , Quirópteros/virología , Humanos , Zoonosis/epidemiología , Zoonosis/transmisión , Zoonosis/virología
7.
Vopr Virusol ; 64(2): 63-72, 2019.
Artículo en Ruso | MEDLINE | ID: mdl-31412172

RESUMEN

INTRODUCTION: The new reassortant of the swine flu virus A(H1N1)pdm09, which emerged in 2009, overcame the species barrier and caused the 2009-2010 pandemic. One of the key points required for the influenza virus to overcome the species barrier and adapt it to humans is its specific binding to the receptors on the epithelium of the human respiratory tract. PURPOSE: Studying the dynamics of changes in receptor specificity (RS) of the HA1 subunit of the hemagglutinin of the influenza A(H1N1)pdm09 virus strains isolated during the period 2009-2016 on the territory of the Russian Federation, and an analysis of the possible impact of these changes on the incidence rates of the population of the Russian Federation of pandemic influenza in certain epidemic seasons. MATERIAL AND METHODS: Standard methods of collecting clinical materials, isolation of influenza viruses, their typing and genome sequencing were used. For the study of RS of influenza A virus (H1N1)pdm09, the method of solid phase sialosidenzyme analysis was used. RESULTS: It is shown that the change in the parameter W3/6 , which characterizes the degree of a2-3 receptor specificity (a2-3-RS) of the influenza virus A(H1N1) pdm09 over a2-6-RS, coincides with the change in the incidence rates of the Russian Federation's pandemic flu in separate epidemic seasons. There is a tendency to increase the affinity of the virus A(H1N1)pdm09 to α2-3 analogs of the sialyl-glycan receptors of the human respiratory tract epithelium - α2-3-sialoglycopolymers (α2-3-SGP), and falls to α2-6-SGP, with the virus showing the greatest affinity for sulfated sialoglycopolymers. DISCUSSION: Screening for RS strains of influenza A (H1N1)pdm09 virus isolated on the territory of the Russian Federation in 2009-2016 revealed a decrease in the affinity of viruses for a2-6-sialosides, especially for 6'SL-SGP, which is probably due to the presence of amino acid substitutions in the 222 and 223 positions of RBS HA1 viruses. Previous studies have shown that the presence of such substitutions correlates with an increase in the virulence of the influenza A virus (H1N1)pdm09 [16, 23]. Probably, the pandemic virus has evolved towards the selection of more virulent pneumotropic variants. CONCLUSION: Monitoring of the receptor specificity of a pandemic influenza virus makes it possible to identify strains with altered RS to the epithelium of the human respiratory tract and an increased ability to transfer from person to person. Change in the period 2009-2016 the W3/6 parameter characterizing the degree of α2-3-RS excess of the influenza A(H1N1)pdm09 virus over α2-6-RS, coincides with the change in the incidence rates of the pandemic influenza population of the Russian Federation in certain epidemic seasons.


Asunto(s)
Evolución Molecular , Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Pandemias , Receptores Virales/metabolismo , Factores de Virulencia , Animales , Embrión de Pollo , Perros , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Gripe Humana/epidemiología , Gripe Humana/genética , Gripe Humana/metabolismo , Células de Riñón Canino Madin Darby , Masculino , Federación de Rusia/epidemiología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
8.
Vopr Virusol ; 64(5): 221-228, 2019.
Artículo en Ruso | MEDLINE | ID: mdl-32167687

RESUMEN

INTRODUCTION: There are natural foci of Crimean-Congo hemorrhagic fever (CCHF) that vectored by Hyalomma marginatum ticks in Volga river delta (Astrakhan region, South of Russia). The circulation of Dhori virus (DHOV) (Thogotovirus: Orthomyxoviridae) has been also shown here. We hypothesized that other tick-borne arboviruses are also likely to circulate in the region. In particular, Bhanja virus (Phlebovirus: Phenuiviridae), Wad Medani virus (Orbivirus: Reoviridae), and Tamdy virus (Orthonairovirus: Nairoviridae), which were found to circulate in neighboring regions and are vectored by Haemaphysalis spp., Dermacenter spp., and Hyalomma spp. ticks. OBJECTIVES: The aim of the study was to examine ixodid ticks in Volga river delta for the presence of CCHFV, DHOV, Bhanja virus, Wad Medani virus, and Tamdy virus. MATERIAL AND METHODS: Ticks were collected in Volga river delta in 2017. We used molecular genetic methods for the detection and analysis of nucleic acids (PCR, sequencing, phylogenetic analysis). RESULTS: We detect CCHFV and DHOV RNA in H. marginatum ticks. The rate of infected H. marginatum ticks was 1.98% for CCHFV and 0.4% for DHOV. The results of genetic analysis showed that found DHOV strains are almost identical (99-100% in the M gene) and forms a separate genetic lineage alongside of Batken virus from Central Asia. At the same time, Bhanja virus, Wad Medani virus, and Tamdy virus were not found in ticks, collected in this region. CONCLUSIONS: DHOV is circulating in the natural foci of CCHF in the Volga river delta. The ratio of infection of H. marginatum with CCHFV and DHOV was determined for the first time.


Asunto(s)
Vectores Arácnidos/virología , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Ixodidae/virología , Nairovirus/genética , Orbivirus/genética , Phlebovirus/genética , Animales , Infecciones por Bunyaviridae/epidemiología , Infecciones por Bunyaviridae/transmisión , Infecciones por Bunyaviridae/virología , Monitoreo Epidemiológico , Virus de la Fiebre Hemorrágica de Crimea-Congo/clasificación , Virus de la Fiebre Hemorrágica de Crimea-Congo/aislamiento & purificación , Fiebre Hemorrágica de Crimea/epidemiología , Fiebre Hemorrágica de Crimea/transmisión , Fiebre Hemorrágica de Crimea/virología , Humanos , Nairovirus/clasificación , Nairovirus/aislamiento & purificación , Orbivirus/clasificación , Orbivirus/aislamiento & purificación , Phlebovirus/clasificación , Phlebovirus/aislamiento & purificación , Filogenia , ARN Viral/genética , Infecciones por Reoviridae/epidemiología , Infecciones por Reoviridae/transmisión , Infecciones por Reoviridae/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ríos , Federación de Rusia/epidemiología
9.
Vopr Virusol ; 63(5): 197-201, 2018.
Artículo en Ruso | MEDLINE | ID: mdl-30550095

RESUMEN

Тhе kingdom Archaea, as well as Bacteria, belongs to the overkingdom Prokaryota. Halophilic archaea (Halorubrum lacusprofundi) isolated from Antarctic saline lakes contain plasmids (pR1SE) that code proteins taking part in the formation of membranes of archaea vesicles. The molecular and biological properties of pR1SE and the peculiarity of its interaction with sensitive cells are considered in this article. The role of structural proteins coded by pR1S in the process of formation of vesicle membrane complex is paid special attention. Plasmid-containing archaea vesicles model some properties of viruses. Archaea plasmids can be viewed as possible ancestors of DNA-containing viruses.


Asunto(s)
ADN Viral/genética , Halobacteriales/genética , Halorubrum/genética , Virus/genética , Regiones Antárticas , Archaea/genética , Archaea/virología , Halorubrum/virología , Lagos/microbiología , Plásmidos/genética , Tolerancia a la Sal/genética
10.
Vopr Virusol ; 63(2): 61-68, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-36494923

RESUMEN

The article presents the features of the influenza virus circulation for the period from October 2016 to May 2017 in some territories of Russia collaborating with the D.I. Ivanovsky Institute of Virology, Federal State Budgetary Institution "N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology", Ministry of Health of the Russian Federation. One of the 2016-2017 season's peculiarities in Russia and countries of the Northern hemisphere was the earlier start of an increase in ARD morbidity with peak indexes reached towards the end of December 2016 - January 2017. First, influenza A(H3N2) virus was predominant; then, it was followed by influenza B virus activity observed until the end of the season. The indexes of morbidity were higher than in the previous season, while the rates of hospitalization and mortality were lower, lethal cases being detected in persons 65 years old and older. Epidemic strains of influenza A(H3N2) virus belonged to 3c.2a genetic group, reference strain A/Hong Hong/4408/2014, and its subgroup 3c.2a1, reference A/Bolzano/7/2016, that are antigenically similar. Strains of influenza B virus were antigenically similar to the B/Brisbane/60/2008 vaccine virus. Strains were sensitive to oseltamivir and zanamivir. The share participation of non-influenza ARI viruses was similar to preliminary epidemic seasons. WHO has issued recommendations for influenza virus vaccines composition for 2017-2018 for the Northern hemisphere.

11.
Vopr Virusol ; 63(1): 5-10, 2018 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36494991

RESUMEN

The brief review is devoted to description of the discovery of giant viruses belonging to the families of Mimiviridae and Marseilleviridae, as well as unassigned genera Pithoviruses, Pandoravirus, and Molliviruses. The review presents issues of their origin, evolution, and molecular-biological characteristics.

12.
Vopr Virusol ; 62(2): 81-86, 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-36494932

RESUMEN

Chenuda virus (CNUV) (Orbivirus, Reoviridae) is the only known orbivirus associated with argas (Argasidae) ticks. Scientific study of this group is necessary for understanding of Orbivirus genus evolution patterns. We conducted a comparative analysis of full genomes of five different viruses of Chenuda virus species, including Baku virus strains (BAKV) circulating in a rather limited area in the Central Asia and Transcaucasia. It was shown that VP4(OC1) and VP6(Hel) proteins variability greatly exceeds the variability of other proteins. The divergence between CNUV and BAKV in this proteins is about 50%. Even in closely related strains isolated from the same geographical region, the conservative genes of which are 90-95% identical, the VP4(OC1) and VP6(Hel) divergence reaches values that would usually be indicative of different serotypes (74.1-82.2%).

13.
Vopr Virusol ; 62(1): 11-7, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29323841

RESUMEN

Small bays of bird bazaars of the Arctic Kola Peninsula (Barents Sea) have been studied. RNA of influenza A virus was found in the surface microlayer (SM) and aerosol samples from the bays located beneath bird colonies. The nucleotide sequencing of the PCR fragments from the SM and the sea aerosol showed their identity for each bay. Virus transfer mechanism along the "surface microlayer - sea aerosol" path has been proposed. The kinetic scheme of the virus-host-environment interaction, which allows the dependence of the viral population size on the temperature to be simulated, has been developed.


Asunto(s)
Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Modelos Estadísticos , Agua de Mar/virología , Aerosoles , Animales , Regiones Árticas/epidemiología , Bahías/virología , Aves , Interacciones Huésped-Patógeno , Virus de la Influenza A/genética , Gripe Aviar/transmisión , Federación de Rusia/epidemiología , Temperatura
14.
Vopr Virusol ; 61(2): 53-8, 2016.
Artículo en Ruso | MEDLINE | ID: mdl-27451495

RESUMEN

This work deals with the systematics and taxonomy of orthobunyaviruses, little-studied dangerous and new iruses Akabane, Aino, Schmallenberg, Cache Valley diseases, Oropouche fever. The significance of the reassortment mechanism of their origin and diversification is discussed.


Asunto(s)
Infecciones por Bunyaviridae/epidemiología , Orthobunyavirus/genética , Virus Reordenados/genética , Zoonosis/epidemiología , África/epidemiología , Animales , Infecciones por Bunyaviridae/patología , Infecciones por Bunyaviridae/virología , Europa (Continente)/epidemiología , Humanos , América Latina/epidemiología , Orthobunyavirus/clasificación , Orthobunyavirus/patogenicidad , Filogenia , Virus Reordenados/clasificación , Virus Reordenados/patogenicidad , Zoonosis/patología , Zoonosis/virología
15.
Ter Arkh ; 88(11): 112-120, 2016.
Artículo en Ruso | MEDLINE | ID: mdl-28635831

RESUMEN

In the 2015-2016 epidemic season, there were dominant influenza A(H1N1)pdm09 strains (over 90%) among the circulating influenza viruses in most countries of the Northern Hemisphere and in Russia. A study of the antigenic properties of influenza A(H1N1)pdm09 strains revealed no differences in those of vaccine virus. Sequencing showed that there were amino acid substitutions in hemagglutinin (receptor binding and Sa sites) and in the genes encoding internal proteins (PA, NP, M1, and NS1). The rise in the incidence in the Russian Federation, which was etiologically associated with influenza viruses, was registered in January-February 2016 with its maximum being observed at 4-5 weeks of 2016. Within the framework of the epidemiological surveillance of circulating influenza viruses in the Russian Federation, which was conducted by the WHO European Office, the D.I. Ivanovsky Institute of Virology, Honorary Academician N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of Russia, and the Research Institute of Influenza, Ministry of Health of Russia, monitored at the Infectious Diseases Hospital One (IDH-1), Moscow Healthcare Department. Among 1491 examinees, influenza was verified in 104 (21.3%) adults, 208 (42.5%) pregnant women, and 177 (36.2%) children. Influenza A(H1N1)pdm09 was more often diagnosed in the age group of 15-40 years (63.7%); the proportion of influenza patients aged over 50 years increased (22.1%). Most adult patients had moderate influenza; pneumonia complicated the disease in 27.4%. Influenza in the pregnant women was complicated by pneumonia in 4.8% of cases. Influenza was more frequently diagnosed in infants and preschool children aged 0 to 3 years (42.9%), 4 to 6 years (41.2%), and older (15.9%), namely: 7-9 years (10%) and 10-12 years (5.9%). Influenza in the children was complicated by acute tonsillitis (19.4%) and varying degrees of laryngeal stenosis (12.4%). Bronchial obstructive syndrome developed in 2.5%, the rate of pneumonia was 6.2%. Antiviral therapy (AVT) in the early stages of the disease reduces the risk of its severity, the frequency of secondary complications, and the duration and degree of clinical symptoms of influenza. AVT with oseltamivir, zanamivir, imidazolyl ethanamide pentandioic acid (ingavirin), and interferon-a2b (viferon) has been performed in the patients hospitalized at Moscow IDH-1 in the 2015-2016 epidemic season.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana/epidemiología , Adolescente , Adulto , Algoritmos , Niño , Preescolar , Femenino , Humanos , Incidencia , Lactante , Recién Nacido , Gripe Humana/diagnóstico , Gripe Humana/tratamiento farmacológico , Moscú , Embarazo , Federación de Rusia/epidemiología , Estaciones del Año , Adulto Joven
16.
Vopr Virusol ; 61(4): 159-166, 2016 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36494963

RESUMEN

This work describes the specific features of the influenza virus circulating in the period from October 2015 to March 2016 in 10 cities of Russia, the basic laboratories of CEEI at the D.I. Ivanovsky Institute of Virology "Federal Research Centre of Epidemilogy and Microbiology named after the honorary academician N.F. Gamaleya" of the Ministry of Health of the Russian Federation. The increase in the morbidity caused by influenza viruses was detected in January-February 2016. The duration of the morbidity peak was 4-5 weeks. The most vulnerable group included children at the age from 3 to 6; a high rate of hospitalization was also detected among people at the age of 15-64 (65%). In clinic symptoms there were middle and severe forms with high frequency of hospitalization as compared with the season of 2009-2010, but much higher in comparison with the season of 2014-2015. Some of the hospitalized patients had virus pneumonias, half of which were bilateral. Among these patients, 10% were children; 30%, adults. The mortality in the intensive care unit of the hospital was 46%. Almost all lethal cases were among unvaccinated patients in the case of late hospitalization and without early antiviral therapy. The predominance of the influenza A(H1N1)09pdm virus both in the Russian Federation and the major part of the countries in the Northern hemisphere was noted. The results of the study of the antigenic properties of influenza strains of A(H1N1)pdm09 virus did not reveal any differences with respect to the vaccine virus. The sequencing data showed the amino acid substitutions in hemagglutinin (receptor binding and Sa sites) and in genes encoding internal proteins (PA, NP, M1, NS1). Strains were sensitive to oseltamivir and zanamivir and maintained resistance to rimantadine. The participation of non-influenza ARI viruses was comparable to that in preliminary epidemic seasons.

17.
Vopr Virusol ; 61(4): 166-171, 2016 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36494964

RESUMEN

Survey data from autopsy specimens from patients who died from pneumonia caused by the influenza A(H1N1) pdm09 in 2012-2014 and mutant forms of influenza virus in these patients (position 222 in the receptor-binding region of hemagglutinin) were presented. In total, according to aggregate data, obtained with three different methods (sequencing, next-generation sequencing (NGS), virus isolation) mutant viruses were detected in 17 (41%) from 41 patients. The proportion of the mutant forms in viral populations ranged from 1% to 69.2%. The most frequent mixture was the wild type (D222) and mutant (D222G), with proportion of mutant type ranged from 3.3% to 69.2% in the viral population. Mutation D222N (from 1.1% to 5.5%) was found rarely. Composition of the viral population from one patient is extremely heterogeneous: in left lung there was only wild type D222, meantime in right lung - mixture of mutant forms 222D/N/G (65.4/32.5/1.1%), in trachea - mixture 222D/G/Y/A (61.8/35.6/1.2/1.4%, respectively), and in bronchi compound of 222D/G/N/A (64.3/33.7/1/1%, respectively) were detected. The obtained data indicate that the process of adaptation of the virus in the lower respiratory tract is coupled with the appearance of different virus variants with mutations in the receptor-binding region. Mutant forms of the virus are observed in the lower respiratory tract of the majority of patients with lethal viral pneumonia. However, if they are a minor part of the population, they cannot be detected by the method of conventional sequencing. They can be identified using the NGS methods.

18.
Vopr Virusol ; 61(6): 245-256, 2016 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36494983

RESUMEN

Twenty years ago in the South Chinese province of Guangdong the epizooty of highly pathogenic avian influenza (HPAI) H5N1 virus, which has laid the foundation of the largest epizooty in the contemporary history, has flashed. Hemagglutinin of prototype A/goose/Guangdong/1/1996 (H5N1) changing many times and generating new genetic subgroups participated in various reassortations; it still exists today. The present review is devoted to the retrospective analysis of HPAI/H5N1evolution for the last twenty years in the territory of Eurasia, Africa and America. The basis for the discussion is ecological model according to which new genetic variants are formed in the migration pathways with close contacts between different bird populations and in the overwintering areas where the maximum values of the immune layer occur; amplification of virus variants occurs in nesting areas among juvenile populations. The updated system of designations of genetic groups introduced by WHO/OIE/FAO H5 Evolution Working Group in 2015 is used.

19.
Vopr Virusol ; 59(6): 16-22, 2014.
Artículo en Ruso | MEDLINE | ID: mdl-25929031

RESUMEN

Almost complete nucleotide sequences for the S, M, and L segments were obtained for three strains of the Batai virus (Bunyamwera serogroup, genus Orthobunyavirus, Bunyaviridae family). Based on the results of the phylogenetic analysis conducted forthe three genomic segments LEIV Ast507 and LEIV-Ast528 strains were grouped with other European BATV isolates and were found to be almost identical to the strain 42 isolated from Volgograd Region, Russia, 2003. Surprisingly, LEIV-13395 strain isolated from the Aedes sp. mosquitos in Magadan Oblast, 1987, turned out to be a novel genotype inside Bunyamwera serogroup. The highest nucleotide identity levels of LEIV-13395 genomicsegments (86.9%, 80.8%, 79.7% for S, M and L segments respectively) were observed with corresponding segments of the Batai virus.


Asunto(s)
Aedes/virología , Virus Bunyamwera/genética , Infecciones por Bunyaviridae/veterinaria , Genoma Viral , Insectos Vectores/virología , Filogenia , Animales , Secuencia de Bases , Aves/virología , Encéfalo/virología , Virus Bunyamwera/clasificación , Virus Bunyamwera/aislamiento & purificación , Virus Bunyamwera/metabolismo , Infecciones por Bunyaviridae/epidemiología , Infecciones por Bunyaviridae/virología , Chlorocebus aethiops/virología , Genotipo , Glicosilación , Ratones , Datos de Secuencia Molecular , Federación de Rusia/epidemiología , Homología de Secuencia de Ácido Nucleico , Células Vero , Proteínas Virales/genética , Proteínas Virales/metabolismo
20.
Vopr Virusol ; 59(6): 23-7, 2014.
Artículo en Ruso | MEDLINE | ID: mdl-25929032

RESUMEN

Reverse genetics was applied to engineering of the reassortantvaccine candidate strain against highly pathogenic avian influenza viruses (HPAIVs) of the H5 subtype. The new strain recPR8-H5N1 contains the HA gene from the Russian HPAIV A/Kurgan/05/2005 (H5N1), the NA and internal genes from A/Puerto Rico/8/34 (H1N1). The strain recPR8-H5N1 demonstrated the antigenic specificity (H5), high proliferation rate in 12 days chicken embryos, and was lethal for the embryos in 36 hours. An inactivated emulsified vaccine based on the strain recPR8-H5N1 elicited high antibody titers and protected 6-week-old chickens from lethal challenge with the HPAIV A/Kurgan/05/2005 (H5N1) on day 21 after single immunization. Infection of non-vaccinated birds with the strain recPR8-H5N1 did not cause any pathology, and the virus was not detected using PCR in blood and cloacal swabs on day 7 p.i. Specific weak seroconversion caused by infection with the strain recPR8-H5N1 was detected on day 14 p.i. As a result, a new influenza virus strain was obtained with modified properties.


Asunto(s)
Anticuerpos Antivirales/biosíntesis , Antígenos Virales/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Vacunas contra la Influenza/inmunología , Gripe Aviar/prevención & control , Virus Reordenados/genética , Genética Inversa , Animales , Antígenos Virales/inmunología , Embrión de Pollo , Pollos/virología , Ingeniería Genética/métodos , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Gripe Aviar/inmunología , Gripe Aviar/virología , Virus Reordenados/inmunología , Vacunas de Productos Inactivados , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA