Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
bioRxiv ; 2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38187535

RESUMEN

PIEZO1 channels play a critical role in numerous physiological processes by transducing diverse mechanical stimuli into electrical and chemical signals. Recent studies underscore the importance of endogenous PIEZO1 activity and localization in regulating mechanotransduction. To enable physiologically and clinically relevant human-based studies, we genetically engineered human induced pluripotent stem cells (hiPSCs) to express a HaloTag fused to endogenous PIEZO1. Combined with super-resolution imaging, our chemogenetic approach allows precise visualization of PIEZO1 in various cell types. Further, the PIEZO1-HaloTag hiPSC technology allows non-invasive monitoring of channel activity via Ca2+-sensitive HaloTag ligands, with temporal resolution approaching that of patch clamp electrophysiology. Using lightsheet imaging of hiPSC-derived neural organoids, we also achieve molecular scale PIEZO1 imaging in three-dimensional tissue samples. Our advances offer a novel platform for studying PIEZO1 mechanotransduction in human cells and tissues, with potential for elucidating disease mechanisms and development of targeted therapeutics.

3.
Nat Commun ; 13(1): 7467, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463216

RESUMEN

Piezo1 is a bona fide mechanosensitive ion channel ubiquitously expressed in mammalian cells. The distribution of Piezo1 within a cell is essential for various biological processes including cytokinesis, cell migration, and wound healing. However, the underlying principles that guide the subcellular distribution of Piezo1 remain largely unexplored. Here, we demonstrate that membrane curvature serves as a key regulator of the spatial distribution of Piezo1 in the plasma membrane of living cells. Piezo1 depletes from highly curved membrane protrusions such as filopodia and enriches to nanoscale membrane invaginations. Quantification of the curvature-dependent sorting of Piezo1 directly reveals the in situ nano-geometry of the Piezo1-membrane complex. Piezo1 density on filopodia increases upon activation, independent of calcium, suggesting flattening of the channel upon opening. Consequently, the expression of Piezo1 inhibits filopodia formation, an effect that diminishes with channel activation.


Asunto(s)
Calcio , Seudópodos , Animales , Membrana Celular , Movimiento Celular , Citocinesis , Mamíferos
4.
J Gen Physiol ; 154(10)2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36069933

RESUMEN

Mechanical forces and tissue mechanics influence the morphology of the developing brain, but the underlying molecular mechanisms have been elusive. Here, we examine the role of mechanotransduction in brain development by focusing on Piezo1, a mechanically activated ion channel. We find that Piezo1 deletion results in a thinner neuroepithelial layer, disrupts pseudostratification, and reduces neurogenesis in E10.5 mouse embryos. Proliferation and differentiation of Piezo1 knockout (KO) mouse neural stem cells (NSCs) isolated from E10.5 embryos are reduced in vitro compared to littermate WT NSCs. Transcriptome analysis of E10.5 Piezo1 KO brains reveals downregulation of the cholesterol biosynthesis superpathway, in which 16 genes, including Hmgcr, the gene encoding the rate-limiting enzyme of the cholesterol biosynthesis pathway, are downregulated by 1.5-fold or more. Consistent with this finding, membrane lipid composition is altered, and the cholesterol levels are reduced in Piezo1 KO NSCs. Cholesterol supplementation of Piezo1 KO NSCs partially rescues the phenotype in vitro. These findings demonstrate a role for Piezo1 in the neurodevelopmental process that modulates the quantity, quality, and organization of cells by influencing cellular cholesterol metabolism. Our study establishes a direct link in NSCs between PIEZO1, intracellular cholesterol levels, and neural development.


Asunto(s)
Canales Iónicos/metabolismo , Mecanotransducción Celular , Células-Madre Neurales , Animales , Encéfalo/metabolismo , Colesterol , Mecanotransducción Celular/fisiología , Ratones , Ratones Noqueados , Células-Madre Neurales/metabolismo
5.
J Biol Chem ; 295(32): 11364-11376, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32571874

RESUMEN

CopG is an uncharacterized protein ubiquitous in Gram-negative bacteria whose gene frequently occurs in clusters of copper resistance genes and can be recognized by the presence of a conserved CxCC motif. To investigate its contribution to copper resistance, here we undertook a structural and biochemical characterization of the CopG protein from Pseudomonas aeruginosa Results from biochemical analyses of CopG purified under aerobic conditions indicate that it is a green copper-binding protein that displays absorbance maxima near 411, 581, and 721 nm and is monomeric in solution. Determination of the three-dimensional structure by X-ray crystallography revealed that CopG consists of a thioredoxin domain with a C-terminal extension that contributes to metal binding. We noted that adjacent to the CxCC motif is a cluster of four copper ions bridged by cysteine sulfur atoms. Structures of CopG in two oxidation states support the assignment of this protein as an oxidoreductase. On the basis of these structural and spectroscopic findings and also genetic evidence, we propose that CopG has a role in interconverting Cu(I) and Cu(II) to minimize toxic effects and facilitate export by the Cus RND transporter efflux system.


Asunto(s)
Proteína Coatómero/metabolismo , Cobre/metabolismo , Cisteína/química , Cristalografía por Rayos X , Bacterias Gramnegativas/metabolismo , Humanos , Oxidación-Reducción
6.
J Biol Chem ; 293(51): 19659-19671, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30355736

RESUMEN

Systemic light-chain amyloidosis (AL) is a human disease caused by overexpression of monoclonal immunoglobulin light chains that form pathogenic amyloid fibrils. These amyloid fibrils deposit in tissues and cause organ failure. Proteins form amyloid fibrils when they partly or fully unfold and expose segments capable of stacking into ß-sheets that pair and thereby form a tight, dehydrated interface. These structures, termed steric zippers, constitute the spines of amyloid fibrils. Here, using a combination of computational (with ZipperDB and Boston University ALBase), mutational, biochemical, and protein structural analyses, we identified segments within the variable domains of Ig light chains that drive the assembly of amyloid fibrils in AL. We demonstrate that there are at least two such segments and that each one can drive amyloid fibril assembly independently of the other. Our analysis revealed that peptides derived from these segments form steric zippers featuring a typical dry interface with high-surface complementarity and occupy the same spatial location of the Greek-key immunoglobulin fold in both λ and κ variable domains. Of note, some predicted steric-zipper segments did not form amyloid fibrils or assembled into fibrils only when removed from the whole protein. We conclude that steric-zipper propensity must be experimentally validated and that the two segments identified here may represent therapeutic targets. In addition to elucidating the molecular pathogenesis of AL, these findings also provide an experimental approach for identifying segments that drive fibril formation in other amyloid diseases.


Asunto(s)
Amiloide/metabolismo , Cadenas Ligeras de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/metabolismo , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Secuencia de Aminoácidos , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/tratamiento farmacológico , Modelos Moleculares , Terapia Molecular Dirigida , Dominios Proteicos
7.
Elife ; 4: e10935, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26576950

RESUMEN

Overproduction of immunoglobulin light chains leads to systemic amyloidosis, a lethal disease characterized by the formation of amyloid fibrils in patients' tissues. Excess light chains are in equilibrium between dimers and less stable monomers which can undergo irreversible aggregation to the amyloid state. The dimers therefore must disassociate into monomers prior to forming amyloid fibrils. Here we identify ligands that inhibit amyloid formation by stabilizing the Mcg light chain variable domain dimer and shifting the equilibrium away from the amyloid-prone monomer.


Asunto(s)
Amiloide/antagonistas & inhibidores , Cadenas Ligeras de Inmunoglobulina/metabolismo , Ligandos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA