Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Asunto principal
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 11(11): 10532-10539, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30789254

RESUMEN

Pseudomonas aeruginosa is an opportunistic, multidrug-resistant, human pathogen that forms biofilms in environments with fluid flow, such as the lungs of cystic fibrosis patients, industrial pipelines, and medical devices. P. aeruginosa twitches upstream on surfaces by the cyclic extension and retraction of its mechanoresponsive type IV pili motility appendages. The prevention of upstream motility, host invasion, and infectious biofilm formation in fluid flow systems remains an unmet challenge. Here, we describe the design and application of scalable nanopillared surface structures fabricated using nanoimprint lithography that reduce upstream motility and colonization by P. aeruginosa. We used flow channels to induce shear stress typically found in catheter tubes and microscopy analysis to investigate the impact of nanopillared surfaces with different packing fractions on upstream motility trajectory, displacement, velocity, and surface attachment. We found that densely packed, subcellular nanopillared surfaces, with pillar periodicities ranging from 200 to 600 nm and widths ranging from 70 to 215 nm, inhibit the mechanoresponsive upstream motility and surface attachment. This bacteria-nanostructured surface interface effect allows us to tailor surfaces with specific nanopillared geometries for disrupting cell motility and attachment in fluid flow systems.


Asunto(s)
Nanoestructuras/química , Movimiento Celular/efectos de los fármacos , Nanoestructuras/toxicidad , Polimetil Metacrilato/química , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Resistencia al Corte/efectos de los fármacos , Propiedades de Superficie
2.
ACS Appl Bio Mater ; 2(8): 3159-3163, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35030760

RESUMEN

Filamentous fungi are invasive and multidrug resistant pathogens that commonly contaminate biomedical devices and implants. Once spherical fungal spores attach to a surface, they exhibit germ tube development, hyphal growth, and robust biofilm formation. Nanotopography found on plants, reptiles, and insect wings possess bactericidal properties during prokaryotic cell adhesion. Here, we demonstrate the application of biomimetic nanopillars that inhibit eukaryotic filamentous fungal growth and possess fungicidal properties. Furthermore, many spores on the nanopillars appeared deflated, while those on the flat surfaces remained spherical and intact. These antifungal phenomena provide promising applications in antifouling biointerfaces for biomedical devices and implants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA