Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1163566, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37303798

RESUMEN

Cassava is a root crop important for global food security and the third biggest source of calories on the African continent. Cassava production is threatened by Cassava mosaic disease (CMD), which is caused by a complex of single-stranded DNA viruses (family: Geminiviridae, genus: Begomovirus) that are transmitted by the sweet potato whitefly (Bemisia tabaci). Understanding the dynamics of different cassava mosaic begomovirus (CMB) species through time is important for contextualizing disease trends. Cassava plants with CMD symptoms were sampled in Lake Victoria and coastal regions of Kenya before transfer to a greenhouse setting and regular propagation. The field-collected and greenhouse samples were sequenced using Illumina short-read sequencing and analyzed on the Galaxy platform. In the field-collected samples, African cassava mosaic virus (ACMV), East African cassava mosaic virus (EACMV), East African cassava mosaic Kenya virus (EACMKV), and East African cassava mosaic virus-Uganda variant (EACMV-Ug) were detected in samples from the Lake Victoria region, while EACMV and East African mosaic Zanzibar virus (EACMZV) were found in the coastal region. Many of the field-collected samples had mixed infections of EACMV and another begomovirus. After 3 years of regrowth in the greenhouse, only EACMV-like viruses were detected in all samples. The results suggest that in these samples, EACMV becomes the dominant virus through vegetative propagation in a greenhouse. This differed from whitefly transmission results. Cassava plants were inoculated with ACMV and another EACMV-like virus, East African cassava mosaic Cameroon virus (EACMCV). Only ACMV was transmitted by whiteflies from these plants to recipient plants, as indicated by sequencing reads and copy number data. These results suggest that whitefly transmission and vegetative transmission lead to different outcomes for ACMV and EACMV-like viruses.

2.
NPJ Microgravity ; 8(1): 38, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36064795

RESUMEN

The spaceflight environment of the International Space Station poses a multitude of stresses on plant growth including reduced gravity. Plants exposed to microgravity and other conditions on the ISS display root skewing, changes in gene expression and protein abundance that may result in changes in cell wall composition, antioxidant accumulation and modification of growth anisotropy. Systematic studies that address the effects of microgravity on cellular organelles are lacking but altered numbers and sizes of vacuoles have been detected in previous flights. The prominent size of plant vacuoles makes them ideal models to study organelle dynamics in space. Here, we used Arabidopsis zigzag-1 (zig-1) as a sensitized genotype to study the effect of microgravity on plant vacuole fusion. Wortmannin was used to induce vacuole fusion in seedlings and a formaldehyde-based fixation protocol was developed to visualize plant vacuole morphology after sample return, using confocal microscopy. Our results indicate that microgravity enhances the zig-1 phenotype by reducing hypocotyl growth and vacuole fusion in some cells. This study demonstrates the feasibility of chemical inhibitor treatments for plant cell biology experiments in space.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA