Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Res Sq ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39011115

RESUMEN

Psychological stress during pregnancy is known to have a range of long-lasting negative consequences on the development and health of offspring. Here, we tested whether a measure of prenatal early-life stress was associated with a biomarker of physiological development at birth, namely epigenetic gestational age, using foetal cord-blood DNA-methylation data. Longitudinal cohorts from the Netherlands (Generation R Study [Generation R], n = 1,396), the UK (British Avon Longitudinal Study of Parents and Children [ALSPAC], n = 642), and Norway (Mother, Father and Child Cohort Study [MoBa], n1 = 1,212 and n2 = 678) provided data on prenatal maternal stress and genome-wide DNA methylation from cord blood and were meta-analysed (pooled n = 3,928). Measures of epigenetic age acceleration were calculated using three different gestational epigenetic clocks: "Bohlin", "EPIC overlap" and "Knight". Prenatal stress exposure, examined as an overall cumulative score, was not significantly associated with epigenetically-estimated gestational age acceleration or deceleration in any of the clocks, based on the results of the pooled meta-analysis or those of the individual cohorts. No significant associations were identified with specific domains of prenatal stress exposure, including negative life events, contextual (socio-economic) stressors, parental risks (e.g., maternal psychopathology) and interpersonal risks (e.g., family conflict). Further, no significant associations were identified when analyses were stratified by sex. Overall, we find little support that prenatal psychosocial stress is associated with variation in epigenetic age at birth within the general paediatric population.

2.
Int J Cancer ; 155(5): 946-956, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38733362

RESUMEN

Endometrial cancer (EC) is one of the most common female cancers and there is currently no routine screening strategy for early detection. An altered abundance of circulating microRNAs (miRNAs) and other RNA classes have the potential as early cancer biomarkers. We analyzed circulating RNA levels using small RNA sequencing, targeting RNAs in the size range of 17-47 nucleotides, in EC patients with samples collected prior to diagnosis compared to cancer-free controls. The analysis included 316 cases with samples collected 1-11 years prior to EC diagnosis, and 316 matched controls, both from the Janus Serum Bank cohort in Norway. We identified differentially abundant (DA) miRNAs, isomiRs, and small nuclear RNAs between EC cases and controls. The top EC DA miRNAs were miR-155-5p, miR-200b-3p, miR-589-5p, miR-151a-5p, miR-543, miR-485-5p, miR-625-p, and miR-671-3p. miR-200b-3p was previously reported to be among one of the top miRNAs with higher abundance in EC cases. We observed 47, 41, and 32 DA miRNAs for EC interacting with BMI, smoking status, and physical activity, respectively, including two miRNAs (miR-223-3p and miR-29b-3p) interacting with all three factors. The circulating RNAs are altered and show temporal dynamics prior to EC diagnosis. Notably, DA miRNAs for EC had the lowest q-value 4.39-6.66 years before diagnosis. Enrichment analysis of miRNAs showed that signaling pathways Fc epsilon RI, prolactin, toll-like receptor, and VEGF had the strongest associations.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Endometriales , Humanos , Femenino , Neoplasias Endometriales/sangre , Neoplasias Endometriales/diagnóstico , Neoplasias Endometriales/genética , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Persona de Mediana Edad , Anciano , MicroARN Circulante/sangre , Estudios de Casos y Controles , MicroARNs/sangre , MicroARNs/genética , Regulación Neoplásica de la Expresión Génica , Noruega/epidemiología , Adulto
3.
iScience ; 26(10): 107755, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37731623

RESUMEN

Prenatal paracetamol exposure has been associated with neurodevelopmental outcomes in childhood. Pharmacoepigenetic studies show differences in cord blood DNA methylation between unexposed and paracetamol-exposed neonates, however, causality and impact of long-term prenatal paracetamol exposure on brain development remain unclear. Using a multi-omics approach, we investigated the effects of paracetamol on an in vitro model of early human neurodevelopment. We exposed human embryonic stem cells undergoing neuronal differentiation with paracetamol concentrations corresponding to maternal therapeutic doses. Single-cell RNA-seq and ATAC-seq integration identified paracetamol-induced chromatin opening changes linked to gene expression. Differentially methylated and/or expressed genes were involved in neurotransmission and cell fate determination trajectories. Some genes involved in neuronal injury and development-specific pathways, such as KCNE3, overlapped with differentially methylated genes previously identified in cord blood associated with prenatal paracetamol exposure. Our data suggest that paracetamol may play a causal role in impaired neurodevelopment.

4.
Front Genet ; 14: 1204879, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396039

RESUMEN

Pharmacoepigenetic studies are important to understand the mechanisms through which medications influence the developing fetus. For instance, we and others have reported associations between prenatal paracetamol exposure and offspring DNA methylation (DNAm). Additionally, folic acid (FA) intake during pregnancy has been associated with DNAm in genes linked to developmental abnormalities. In this study, we aimed to: (i) expand on our previous findings showing differential DNAm associated with long-term prenatal paracetamol exposure in offspring with attention-deficit/hyperactivity disorder (ADHD), and (ii) examine if there is an interaction effect of FA and paracetamol on DNAm in children with ADHD. We used data from the Norwegian Mother, Father and Child Cohort Study (MoBa) and the Medical Birth Registry of Norway (MBRN). We did not identify any impact of paracetamol or any interaction effect of paracetamol and FA on cord blood DNAm in children with ADHD. Our results contribute to the growing literature on prenatal pharmacoepigenetics, but should be replicated in other cohorts. Replication of pharmacoepigenetic studies is essential to ensure robust findings and to increase the clinical relevance of such studies.

5.
Transl Psychiatry ; 13(1): 149, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147306

RESUMEN

Studies assessing associations between prenatal exposure to antidepressants, maternal depression, and offspring DNA methylation (DNAm) have been inconsistent. Here, we investigated whether prenatal exposure to citalopram or escitalopram ((es)citalopram) and maternal depression is associated with differences in DNAm. Then, we examined if there is an interaction effect of (es)citalopram exposure and DNAm on offspring neurodevelopmental outcomes. Finally, we investigated whether DNAm at birth correlates with neurodevelopmental trajectories in childhood. We analyzed DNAm in cord blood from the Norwegian Mother, Father and Child Cohort Study (MoBa) biobank. MoBa contains questionnaire data on maternal (es)citalopram use and depression during pregnancy and information about child neurodevelopmental outcomes assessed by internationally recognized psychometric tests. In addition, we retrieved ADHD diagnoses from the Norwegian Patient Registry and information on pregnancies from the Medical Birth Registry of Norway. In total, 958 newborn cord blood samples were divided into three groups: (1) prenatal (es)citalopram exposed (n = 306), (2) prenatal maternal depression exposed (n = 308), and (3) propensity score-selected controls (n = 344). Among children exposed to (es)citalopram, there were more ADHD diagnoses and symptoms and delayed communication and psychomotor development. We did not identify differential DNAm associated with (es)citalopram or depression, nor any interaction effects on neurodevelopmental outcomes throughout childhood. Trajectory modeling identified subgroups of children following similar developmental patterns. Some of these subgroups were enriched for children exposed to maternal depression, and some subgroups were associated with differences in DNAm at birth. Interestingly, several of the differentially methylated genes are involved in neuronal processes and development. These results suggest DNAm as a potential predictive molecular marker of later abnormal neurodevelopmental outcomes, but we cannot conclude whether DNAm links prenatal (es)citalopram exposure or maternal depression with child neurodevelopmental outcomes.


Asunto(s)
Metilación de ADN , Efectos Tardíos de la Exposición Prenatal , Embarazo , Recién Nacido , Femenino , Humanos , Niño , Citalopram/efectos adversos , Efectos Tardíos de la Exposición Prenatal/genética , Estudios de Cohortes , Depresión
6.
Hum Genomics ; 17(1): 35, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085889

RESUMEN

BACKGROUND: Assisted reproductive technologies (ART) may perturb DNA methylation (DNAm) in early embryonic development. Although a handful of epigenome-wide association studies of ART have been published, none have investigated CpGs on the X chromosome. To bridge this knowledge gap, we leveraged one of the largest collections of mother-father-newborn trios of ART and non-ART (natural) conceptions to date to investigate sex-specific DNAm differences on the X chromosome. The discovery cohort consisted of 982 ART and 963 non-ART trios from the Norwegian Mother, Father, and Child Cohort Study (MoBa). To verify our results from the MoBa cohort, we used an external cohort of 149 ART and 58 non-ART neonates from the Australian 'Clinical review of the Health of adults conceived following Assisted Reproductive Technologies' (CHART) study. The Illumina EPIC array was used to measure DNAm in both datasets. In the MoBa cohort, we performed a set of X-chromosome-wide association studies ('XWASs' hereafter) to search for sex-specific DNAm differences between ART and non-ART newborns. We tested several models to investigate the influence of various confounders, including parental DNAm. We also searched for differentially methylated regions (DMRs) and regions of co-methylation flanking the most significant CpGs. Additionally, we ran an analogous model to our main model on the external CHART dataset. RESULTS: In the MoBa cohort, we found more differentially methylated CpGs and DMRs in girls than boys. Most of the associations persisted after controlling for parental DNAm and other confounders. Many of the significant CpGs and DMRs were in gene-promoter regions, and several of the genes linked to these CpGs are expressed in tissues relevant for both ART and sex (testis, placenta, and fallopian tube). We found no support for parental DNAm-dependent features as an explanation for the observed associations in the newborns. The most significant CpG in the boys-only analysis was in UBE2DNL, which is expressed in testes but with unknown function. The most significant CpGs in the girls-only analysis were in EIF2S3 and AMOT. These three loci also displayed differential DNAm in the CHART cohort. CONCLUSIONS: Genes that co-localized with the significant CpGs and DMRs associated with ART are implicated in several key biological processes (e.g., neurodevelopment) and disorders (e.g., intellectual disability and autism). These connections are particularly compelling in light of previous findings indicating that neurodevelopmental outcomes differ in ART-conceived children compared to those naturally conceived.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Masculino , Embarazo , Adulto , Niño , Femenino , Humanos , Recién Nacido , Metilación de ADN/genética , Estudios de Cohortes , Estudio de Asociación del Genoma Completo , Australia
7.
Commun Biol ; 6(1): 224, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849614

RESUMEN

Determining if specific cell type(s) are responsible for an association between DNA methylation (DNAm) and a given phenotype is important for understanding the biological mechanisms underlying the association. Our EWAS of gestational age (GA) in 953 newborns from the Norwegian MoBa study identified 13,660 CpGs significantly associated with GA (pBonferroni<0.05) after adjustment for cell type composition. When the CellDMC algorithm was applied to explore cell-type specific effects, 2,330 CpGs were significantly associated with GA, mostly in nucleated red blood cells [nRBCs; n = 2,030 (87%)]. Similar patterns were found in another dataset based on a different array and when applying an alternative algorithm to CellDMC called Tensor Composition Analysis (TCA). Our findings point to nRBCs as the main cell type driving the DNAm-GA association, implicating an epigenetic signature of erythropoiesis as a likely mechanism. They also explain the poor correlation observed between epigenetic age clocks for newborns and those for adults.


Asunto(s)
Metilación de ADN , Eritroblastos , Edad Gestacional , Algoritmos , Epigenómica
8.
iScience ; 25(11): 105279, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36304110

RESUMEN

Neuronal differentiation of pluripotent stem cells is an established method to study physiology, disease, and medication safety. However, the sequence of events in human neuronal differentiation and the ability of in vitro models to recapitulate early brain development are poorly understood. We developed a protocol optimized for the study of early human brain development and neuropharmacological applications. We comprehensively characterized gene expression and epigenetic profiles at four timepoints, because the cells differentiate from embryonic stem cells towards a heterogeneous population of progenitors, immature and mature neurons bearing telencephalic signatures. A multi-omics roadmap of neuronal differentiation, combined with searchable interactive gene analysis tools, allows for extensive exploration of early neuronal development and the effect of medications.

9.
STAR Protoc ; 3(3): 101533, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36123835

RESUMEN

Here, we describe a protocol for rapid neuronal differentiation from human embryonic stem cells (hESCs) toward a heterogenous population of telencephalic progenitors, immature and mature neurons, for drug-screening and early-brain differentiation studies. hESC neuronal differentiation depends on adhesion and minimal cell-passaging to avert monolayer cross-connectivity rupture. In this protocol, we detail optimized cell-seeding densities and coating conditions with high cell viability suitable for neurotoxicology and high-resolution single-cell omics studies. Daily media changes reduce compound instability and degradation for optimal screening. For complete details on the use and execution of this protocol, please refer to Samara et al. (2022).


Asunto(s)
Células Madre Embrionarias Humanas , Diferenciación Celular/fisiología , Supervivencia Celular , Células Madre Embrionarias , Humanos , Neuronas
10.
Environ Int ; 166: 107379, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35792514

RESUMEN

Prenatal exposure to persistent organic pollutants (POPs) is associated with neurodevelopmental disorders. In the present study, we explored whether a human-relevant POP mixture affects the development of chicken embryo cerebellum. We used a defined mixture of 29 POPs, with chemical composition and concentrations based on blood levels in the Scandinavian population. We also evaluated exposure to a prominent compound in the mixture, perfluorooctane sulfonic acid (PFOS), alone. Embryos (n = 7-9 per exposure group) were exposed by injection directly into the allantois at embryonic day 13 (E13). Cerebella were isolated at E17 and subjected to morphological, RNA-seq and shot-gun proteomics analyses. There was a reduction in thickness of the molecular layer of cerebellar cortex in both exposure scenarios. Exposure to the POP mixture significantly affected expression of 65 of 13,800 transcripts, and 43 of 2,568 proteins, when compared to solvent control. PFOS alone affected expression of 80 of 13,859 transcripts, and 69 of 2,555 proteins. Twenty-five genes and 15 proteins were common for both exposure groups. These findings point to alterations in molecular events linked to retinoid X receptor (RXR) signalling, neuronal cell proliferation and migration, cellular stress responses including unfolded protein response, lipid metabolism, and myelination. Exposure to the POP mixture increased methionine oxidation, whereas PFOS decreased oxidation. Several of the altered genes and proteins are involved in a wide variety of neurological disorders. We conclude that POP exposure can interfere with fundamental aspects of neurodevelopment, altering molecular pathways that are associated with adverse neurocognitive and behavioural outcomes.

11.
Clin Epigenetics ; 14(1): 80, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35765087

RESUMEN

BACKGROUND: There is an increasing interest in the role of epigenetics in epidemiology, but the emerging research field faces several critical biological and technical challenges. In particular, recent studies have shown poor correlation of measured DNA methylation (DNAm) levels within and across Illumina Infinium platforms in various tissues. In this study, we have investigated concordance between 450 k and EPIC Infinium platforms in cord blood. We could not replicate our previous findings on the association of prenatal paracetamol exposure with cord blood DNAm, which prompted an investigation of cross-platform DNAm differences. RESULTS: This study is based on two DNAm data sets from cord blood samples selected from the Norwegian Mother, Father and Child Cohort Study (MoBa). DNAm of one data set was measured using the 450 k platform and the other data set was measured using the EPIC platform. Initial analyses of the EPIC data could not replicate any of our previous significant findings in the 450 k data on associations between prenatal paracetamol exposure and cord blood DNAm. A subset of the samples (n = 17) was included in both data sets, which enabled analyses of technical sources potentially contributing to the negative replication. Analyses of these 17 samples with repeated measurements revealed high per-sample correlations ([Formula: see text] 0.99), but low per-CpG correlations ([Formula: see text] ≈ 0.24) between the platforms. 1.7% of the CpGs exhibited a mean DNAm difference across platforms > 0.1. Furthermore, only 26.7% of the CpGs exhibited a moderate or better cross-platform reliability (intra-class correlation coefficient ≥ 0.5). CONCLUSION: The observations of low cross-platform probe correlation and reliability corroborate previous reports in other tissues. Our study cannot determine the origin of the differences between platforms. Nevertheless, it emulates the setting in studies using data from multiple Infinium platforms, often analysed several years apart. Therefore, the findings may have important implications for future epigenome-wide association studies (EWASs), in replication, meta-analyses and longitudinal studies. Cognisance and transparency of the challenges related to cross-platform studies may enhance the interpretation, replicability and validity of EWAS results both in cord blood and other tissues, ultimately improving the clinical relevance of epigenetic epidemiology.


Asunto(s)
Metilación de ADN , Efectos Tardíos de la Exposición Prenatal , Acetaminofén/efectos adversos , Estudios de Cohortes , Femenino , Sangre Fetal , Humanos , Noruega , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Reproducibilidad de los Resultados
12.
Immunology ; 167(1): 28-39, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35751452

RESUMEN

For decades, studies of natural killer (NK) cells have focused on those found in peripheral blood (PBNK cells) as the prototype for NK cell biology. Only recently have researchers begun to explore the diversity of tissue-resident NK (tr-NK) cells. While tr-NK cells were initially identified from mice parabiosis and intravascular staining experiments, they can also be identified by tissue retention markers such as CD69, CD103 and others. More importantly, tr-NK cells have distinct functions compared to PBNK cells. Within the liver, there are diverse subsets of tr-NK cells expressing different combinations of tissue-retention markers and transcription factors, the clinical relevance of which are still unclear. Functionally, liver tr-NK are primed with immediate responsiveness to infection and equipped with regulatory mechanisms to prevent liver damage. When decidual NK (dNK) cells were first discovered, they were mainly characterized by their reduced cytotoxicity and functions related to placental development. Recent studies, however, revealed different mechanisms by which dNK cells prevent uterine infections. The lungs are one of the most highly exposed sites for infection due to their role in oxygen exchange. Upon influenza infection, lung tr-NK cells can degranulate and produce more inflammatory cytokines than PBNK cells. Less understood are gut tr-NK cells which were recently characterized in infants and adults for their functional differences. In this mini-review, we aim to provide a brief overview of the most recent discoveries on how several tr-NK cells are implicated in the immune response against infection.


Asunto(s)
Decidua , Placenta , Animales , Citocinas , Femenino , Humanos , Células Asesinas Naturales , Ratones , Embarazo
13.
Transl Psychiatry ; 12(1): 186, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513368

RESUMEN

Children of mothers with prenatal depressive symptoms (PND) have a higher risk of behavioral problems; fetal programming through DNA methylation is a possible underlying mechanism. This study investigated DNA methylation in cord blood to identify possible "at birth" signatures that may indicate susceptibility to behavioral problems at 18 months of age. Cord blood was collected from 256 children of mothers who had self-reported on symptoms of depression during pregnancy and the behavior of their child at 18 months of age. Whole genome DNA methylation was assessed using Illumina MethylationEPIC assay. The mother and child pairs were categorized into four groups, based on both self-reported depressive symptoms, PND or Healthy control (HC), and scores from the Child Behavior checklist (high or low for internalizing, externalizing, and total scores). Adjustments were made for batch effects, cell-type, and clinical covariates. Differentially methylated sites were identified using Kruskal-Wallis test, and Benjamini-Hochberg adjusted p values < 0.05 were considered significant. The analysis was also stratified by sex of the child. Among boys, we observed higher and correlated DNA methylation of one CpG-site in the promoter region of TPP1 in the HC group, with high externalizing scores compared to HC with low externalizing scores. Boys in the PND group showed lower DNA methylation in NUDT15 among those with high, compared to low, internalizing scores; the DNA methylation levels of CpGs in this gene were positively correlated with the CBCL scores. Hence, the differentially methylated CpG sites could be of interest for resilience, regardless of maternal mental health during pregnancy. The findings are in a relatively healthy study cohort, thus limiting the possibility of detecting strong effects associated with behavioral difficulties. This is the first investigation of cord blood DNA methylation signs of fetal programming of PND on child behavior at 18 months of age and thus calls for independent replications.


Asunto(s)
Epigenoma , Efectos Tardíos de la Exposición Prenatal , Preescolar , Metilación de ADN , Depresión/genética , Femenino , Sangre Fetal/metabolismo , Humanos , Masculino , Madres/psicología , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo
14.
Nat Commun ; 13(1): 1896, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35393427

RESUMEN

Assisted reproductive technology (ART) may affect fetal development through epigenetic mechanisms as the timing of ART procedures coincides with the extensive epigenetic remodeling occurring between fertilization and embryo implantation. However, it is unknown to what extent ART procedures alter the fetal epigenome. Underlying parental characteristics and subfertility may also play a role. Here we identify differences in cord blood DNA methylation, measured using the Illumina EPIC platform, between 962 ART conceived and 983 naturally conceived singleton newborns. We show that ART conceived newborns display widespread differences in DNA methylation, and overall less methylation across the genome. There were 607 genome-wide differentially methylated CpGs. We find differences in 176 known genes, including genes related to growth, neurodevelopment, and other health outcomes that have been associated with ART. Both fresh and frozen embryo transfer show DNA methylation differences. Associations persist after controlling for parents' DNA methylation, and are not explained by parental subfertility.


Asunto(s)
Metilación de ADN , Infertilidad , Fertilización , Fertilización In Vitro , Humanos , Recién Nacido , Infertilidad/genética , Técnicas Reproductivas Asistidas/efectos adversos
15.
Elife ; 112022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35147498

RESUMEN

Lung cancer (LC) prognosis is closely linked to the stage of disease when diagnosed. We investigated the biomarker potential of serum RNAs for the early detection of LC in smokers at different prediagnostic time intervals and histological subtypes. In total, 1061 samples from 925 individuals were analyzed. RNA sequencing with an average of 18 million reads per sample was performed. We generated machine learning models using normalized serum RNA levels and found that smokers later diagnosed with LC in 10 years can be robustly separated from healthy controls regardless of histology with an average area under the ROC curve (AUC) of 0.76 (95% CI, 0.68-0.83). Furthermore, the strongest models that took both time to diagnosis and histology into account successfully predicted non-small cell LC (NSCLC) between 6 and 8 years, with an AUC of 0.82 (95% CI, 0.76-0.88), and SCLC between 2 and 5 years, with an AUC of 0.89 (95% CI, 0.77-1.0), before diagnosis. The most important separators were microRNAs, miscellaneous RNAs, isomiRs, and tRNA-derived fragments. We have shown that LC can be detected years before diagnosis and manifestation of disease symptoms independently of histological subtype. However, the highest AUCs were achieved for specific subtypes and time intervals before diagnosis. The collection of models may therefore also predict the severity of cancer development and its histology. Our study demonstrates that serum RNAs can be promising prediagnostic biomarkers in an LC screening setting, from early detection to risk assessment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , ARN Neoplásico , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/genética , Detección Precoz del Cáncer , Humanos , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , MicroARNs/sangre , MicroARNs/genética , ARN Neoplásico/sangre , ARN Neoplásico/genética , Curva ROC
16.
Bioinformatics ; 38(4): 885-891, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34788815

RESUMEN

MOTIVATION: DNA methylation has been shown to be spatially dependent across chromosomes. Previous studies have focused on the influence of genomic context on the dependency structure, while not considering differences in dependency structure between individuals. RESULTS: We modeled spatial dependency with a flexible framework to quantify the dependency structure, focusing on inter-individual differences by exploring the association between dependency parameters and technical and biological variables. The model was applied to a subset of the Finnish Twin Cohort study (N = 1611 individuals). The estimates of the dependency parameters varied considerably across individuals, but were generally consistent across chromosomes within individuals. The variation in dependency parameters was associated with bisulfite conversion plate, zygosity, sex and age. The age differences presumably reflect accumulated environmental exposures and/or accumulated small methylation differences caused by stochastic mitotic events, establishing recognizable, individual patterns more strongly seen in older individuals. AVAILABILITY AND IMPLEMENTATION: The twin dataset used in the current study are located in the Biobank of the National Institute for Health and Welfare, Finland. All the biobanked data are publicly available for use by qualified researchers following a standardized application procedure (https://thl.fi/en/web/thl-biobank/for-researchers). A R-script for fitting the dependency structure to publicly available DNA methylation data with the software used in this article is provided in supplementary data. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Metilación de ADN , Exposición a Riesgos Ambientales , Humanos , Anciano , Estudios de Cohortes , Genómica , Análisis Espacial
17.
BMC Cancer ; 21(1): 930, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34407780

RESUMEN

BACKGROUND: Colorectal cancer (CRC) screening reduces CRC incidence and mortality. However, current screening methods are either hampered by invasiveness or suboptimal performance, limiting their effectiveness as primary screening methods. To aid in the development of a non-invasive screening test with improved sensitivity and specificity, we have initiated a prospective biomarker study (CRCbiome), nested within a large randomized CRC screening trial in Norway. We aim to develop a microbiome-based classification algorithm to identify advanced colorectal lesions in screening participants testing positive for an immunochemical fecal occult blood test (FIT). We will also examine interactions with host factors, diet, lifestyle and prescription drugs. The prospective nature of the study also enables the analysis of changes in the gut microbiome following the removal of precancerous lesions. METHODS: The CRCbiome study recruits participants enrolled in the Bowel Cancer Screening in Norway (BCSN) study, a randomized trial initiated in 2012 comparing once-only sigmoidoscopy to repeated biennial FIT, where women and men aged 50-74 years at study entry are invited to participate. Since 2017, participants randomized to FIT screening with a positive test result have been invited to join the CRCbiome study. Self-reported diet, lifestyle and demographic data are collected prior to colonoscopy after the positive FIT-test (baseline). Screening data, including colonoscopy findings are obtained from the BCSN database. Fecal samples for gut microbiome analyses are collected both before and 2 and 12 months after colonoscopy. Samples are analyzed using metagenome sequencing, with taxonomy profiles, and gene and pathway content as primary measures. CRCbiome data will also be linked to national registries to obtain information on prescription histories and cancer relevant outcomes occurring during the 10 year follow-up period. DISCUSSION: The CRCbiome study will increase our understanding of how the gut microbiome, in combination with lifestyle and environmental factors, influences the early stages of colorectal carcinogenesis. This knowledge will be crucial to develop microbiome-based screening tools for CRC. By evaluating biomarker performance in a screening setting, using samples from the target population, the generalizability of the findings to future screening cohorts is likely to be high. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01538550 .


Asunto(s)
Neoplasias Colorrectales/diagnóstico , Detección Precoz del Cáncer/métodos , Microbioma Gastrointestinal , Estilo de Vida , Anciano , Estudios de Casos y Controles , Colonoscopía , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/microbiología , Femenino , Estudios de Seguimiento , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Noruega/epidemiología , Sangre Oculta , Pronóstico , Estudios Prospectivos , Curva ROC
18.
Clin Epigenetics ; 13(1): 107, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980276

RESUMEN

BACKGROUND: Long-term stored serum is considered challenging for epigenomic analyses: as there are no cells, circulating DNA is scarce, and amplification removes epigenetic signals. Additionally, pre-analytical treatments and storage might introduce biases and fragmentation to the DNA. In particular, starting with low-input DNA can result in low-diversity libraries. However, successful whole-genome bisulphite sequencing (WGBS) of such serum samples has the potential to open biobanks for epigenetic analyses and deliver novel prediagnostic biomarkers. Here, we perform WGBS using the Accel-NGS library preparation kit on ultralow amounts of DNA from long-term archived samples with diverse pretreatments from the Janus Serum Bank. RESULTS: Ninety-four of the 96 samples produced satisfactory methylation calls; an average of 578 M reads per sample generated a mean coverage of 17× and mean duplication level of 35%. Failed samples were related to poor bisulphite conversion rather than to sequencing or library preparation. We demonstrate the feasibility of WGBS on ultralow DNA yields from serum samples stored up to 48 years. CONCLUSIONS: Our results show the potential of large serum biobank collections for future epigenomic studies and biomarker discovery.


Asunto(s)
Almacenamiento de Sangre/métodos , Bancos de Sangre/estadística & datos numéricos , Metilación de ADN/genética , Epigenómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación Completa del Genoma/métodos , Epigenoma/genética , Humanos , Reproducibilidad de los Resultados , Tiempo
19.
NAR Genom Bioinform ; 3(2): lqab035, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33987535

RESUMEN

DNA methylation is the most widely studied epigenetic mark in humans and plays an essential role in normal biological processes as well as in disease development. More focus has recently been placed on understanding functional aspects of methylation, prompting the development of methods to investigate the relationship between heterogeneity in methylation patterns and disease risk. However, most of these methods are limited in that they use simplified models that may rely on arbitrarily chosen parameters, they can only detect differentially methylated regions (DMRs) one at a time, or they are computationally intensive. To address these shortcomings, we present a wavelet-based method called 'Wavelet Screening' (WS) that can perform an epigenome-wide association study (EWAS) of thousands of individuals on a single CPU in only a matter of hours. By detecting multiple DMRs located near each other, WS identifies more complex patterns that can differentiate between different methylation profiles. We performed an extensive set of simulations to demonstrate the robustness and high power of WS, before applying it to a previously published EWAS dataset of orofacial clefts (OFCs). WS identified 82 associated regions containing several known genes and loci for OFCs, while other findings are novel and warrant replication in other OFCs cohorts.

20.
Clin Epigenetics ; 13(1): 78, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33845866

RESUMEN

BACKGROUND: Prenatal symptoms of depression (PND) and anxiety affect up to every third pregnancy. Children of mothers with mental health problems are at higher risk of developmental problems, possibly through epigenetic mechanisms together with other factors such as genetic and environmental. We investigated DNA methylation in cord blood in relation to PND, taking into consideration a history of depression, co-morbidity with anxiety and selective serotonin reuptake inhibitors (SSRI) use, and stratified by sex of the child. Mothers (N = 373) prospectively filled out web-based questionnaires regarding mood symptoms and SSRI use throughout pregnancy. Cord blood was collected at birth and DNA methylation was measured using Illumina MethylationEPIC array at 850 000 CpG sites throughout the genome. Differentially methylated regions were identified using Kruskal-Wallis test, and Benjamini-Hochberg adjusted p-values < 0.05 were considered significant. RESULTS: No differential DNA methylation was associated with PND alone; however, differential DNA methylation was observed in children exposed to comorbid PND with anxiety symptoms compared with healthy controls in ABCF1 (log twofold change - 0.2), but not after stratification by sex of the child. DNA methylation in children exposed to PND without SSRI treatment and healthy controls both differed in comparison with SSRI exposed children at several sites and regions, among which hypomethylation was observed in CpGs in the promoter region of CRBN (log2 fold change - 0.57), involved in brain development, and hypermethylation in MDFIC (log2 fold change 0.45), associated with the glucocorticoid stress response. CONCLUSION: Although it is not possible to assess if these methylation differences are due to SSRI treatment itself or to more severe depression, our findings add on to existing knowledge that there might be different biological consequences for the child depending on whether maternal PND was treated with SSRIs or not.


Asunto(s)
Metilación de ADN/genética , Trastorno Depresivo/genética , Trastorno Depresivo/psicología , Sangre Fetal , Madres/psicología , Complicaciones del Embarazo/genética , Complicaciones del Embarazo/psicología , Adulto , Femenino , Humanos , Recién Nacido , Masculino , Persona de Mediana Edad , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...