Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791266

RESUMEN

Sympathetic nervous system (SNS) hyperactivity is mediated by elevated catecholamine (CA) secretion from the adrenal medulla, as well as enhanced norepinephrine (NE) release from peripheral sympathetic nerve terminals. Adrenal CA production from chromaffin cells is tightly regulated by sympatho-inhibitory α2-adrenergic (auto)receptors (ARs), which inhibit both epinephrine (Epi) and NE secretion via coupling to Gi/o proteins. α2-AR function is, in turn, regulated by G protein-coupled receptor (GPCR)-kinases (GRKs), especially GRK2, which phosphorylate and desensitize them, i.e., uncouple them from G proteins. On the other hand, the short-chain free fatty acid (SCFA) receptor (FFAR)-3, also known as GPR41, promotes NE release from sympathetic neurons via the Gi/o-derived free Gßγ-activated phospholipase C (PLC)-ß/Ca2+ signaling pathway. However, whether it exerts a similar effect in adrenal chromaffin cells is not known at present. In the present study, we examined the interplay of the sympatho-inhibitory α2A-AR and the sympatho-stimulatory FFAR3 in the regulation of CA secretion from rat adrenal chromaffin (pheochromocytoma) PC12 cells. We show that FFAR3 promotes CA secretion, similarly to what GRK2-dependent α2A-AR desensitization does. In addition, FFAR3 activation enhances the effect of the physiologic stimulus (acetylcholine) on CA secretion. Importantly, GRK2 blockade to restore α2A-AR function or the ketone body beta-hydroxybutyrate (BHB or 3-hydroxybutyrate), via FFAR3 antagonism, partially suppress CA production, when applied individually. When combined, however, CA secretion from PC12 cells is profoundly suppressed. Finally, propionate-activated FFAR3 induces leptin and adiponectin secretion from PC12 cells, two important adipokines known to be involved in tissue inflammation, and this effect of FFAR3 is fully blocked by the ketone BHB. In conclusion, SCFAs can promote CA and adipokine secretion from adrenal chromaffin cells via FFAR3 activation, but the metabolite/ketone body BHB can effectively inhibit this action.


Asunto(s)
Catecolaminas , Receptores Adrenérgicos alfa 2 , Receptores Acoplados a Proteínas G , Animales , Células PC12 , Ratas , Receptores Acoplados a Proteínas G/metabolismo , Catecolaminas/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Adipoquinas/metabolismo , Células Cromafines/metabolismo , Transducción de Señal , Norepinefrina/metabolismo , Norepinefrina/farmacología
2.
Vitam Horm ; 124: 393-404, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38408805

RESUMEN

The adrenal cortex is responsible for production of adrenal steroid hormones and is anatomically divided into three distinct zones: zona glomerulosa secreting mineralocorticoids (mainly aldosterone), zona fasciculata secreting glucocorticoids (cortisol), and zona reticularis producing androgens. Importantly, due to their high lipophilicity, no adrenal steroid hormone (including aldosterone) is stored in vesicles but rather gets synthesized and secreted instantly upon cell stimulation with specific stimuli. Aldosterone is the most potent mineralocorticoid hormone produced from the adrenal cortex in response to either angiotensin II (AngII) or elevated K+ levels in the blood (hyperkalemia). AngII, being a peptide, cannot cross cell membranes and thus, uses two distinct G protein-coupled receptor (GPCR) types, AngII type 1 receptor (AT1R) and AT2R to exert its effects inside cells. In zona glomerulosa cells, AT1R activation by AngII results in aldosterone synthesis and secretion via two main pathways: (a) Gq/11 proteins that activate phospholipase C ultimately raising intracellular free calcium concentration; and (b) ßarrestin1 and -2 (also known as Arrestin-2 and -3, respectively) that elicit sustained extracellular signal-regulated kinase (ERK) activation. Both pathways induce upregulation and acute activation of StAR (steroidogenic acute regulatory) protein, the enzyme that catalyzes the rate-limiting step in aldosterone biosynthesis. This chapter describes these two salient pathways underlying AT1R-induced aldosterone production in zona glomerulosa cells. We also highlight some pharmacologically important notions pertaining to the efficacy of the currently available AT1R antagonists, also known as angiotensin receptor blockers (ARBs) or sartans at suppressing both pathways, i.e., their inverse agonism efficacy at G proteins and ßarrestins.


Asunto(s)
Corteza Suprarrenal , Aldosterona , Humanos , Aldosterona/metabolismo , Angiotensina II , Antagonistas de Receptores de Angiotensina/farmacología , Agonismo Inverso de Drogas , Inhibidores de la Enzima Convertidora de Angiotensina , Corteza Suprarrenal/metabolismo
3.
Drug Des Devel Ther ; 18: 71-80, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38229917

RESUMEN

Introduction: Nicotine is a major component of cigarette smoke with various detrimental cardiovascular effects, including increased oxidative stress in the heart. Agonism of α2-adrenergic receptors (ARs), such as with dexmedetomidine, has been documented to exert cardioprotective effects against oxidative stress and related apoptosis and necroptosis. α2-ARs are membrane-residing G protein-coupled receptors (GPCRs) that primarily activate Gi/o proteins. They are also subjected to GPCR-kinase (GRK)-2-dependent desensitization, which entails phosphorylation of the agonist-activated receptor by GRK2 to induce its decoupling from G proteins, thus terminating α2AR-mediated G protein signaling. Objective: In the present study, we sought to examine the effects of nicotine on α2AR signaling and effects in H9c2 cardiomyocytes exposed to H2O2 to induce oxidative cellular damage. Methods and Results: As expected, treatment of H9c2 cardiomyocytes with H2O2 significantly decreased cell viability and increased oxidative stress, as assessed by reactive oxygen species (ROS)-associated fluorescence levels (DCF assay) and superoxide dismutase activity. Both H2O2 effects were partly rescued by α2AR activation with brimonidine in control cardiomyocytes but not in cells pretreated with nicotine for 24 hours, in which brimonidine was unable to reduce H2O2-induced cell death and oxidative stress. This was due to severe α2AR desensitization, manifested as very low Gi protein activation by brimonidine, and accompanied by GRK2 upregulation in nicotine-treated cardiomyocytes. Finally, pharmacological inhibition of adenylyl cyclase (AC) blocked H2O2-dependent oxidative damage in nicotine-pretreated H9c2 cardiomyocytes, indicating that α2AR activation protects against oxidative injury via its classic coupling to Gai-mediated AC inhibition. Discussion/Conclusions: Nicotine can negate the cardioprotective effects of α2AR agonists against oxidative injury, which may have important implications for patients treated with this class of drugs that are chronic tobacco smokers.


Asunto(s)
Miocitos Cardíacos , Nicotina , Humanos , Nicotina/farmacología , Nicotina/metabolismo , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Estrés Oxidativo , Apoptosis , Tartrato de Brimonidina/metabolismo , Tartrato de Brimonidina/farmacología
4.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38069186

RESUMEN

The goal of the second volume of this Special Issue was to build upon the success of the first one and to continue to highlight the ever-expanding list of pharmacological properties of the sodium/glucose co-transporter (SGLT) type 2 (SGLT2) inhibitor (SGLT2i) drug class (also known as gliflozins) [...].


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Sodio , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Glucosa
5.
Biochem Pharmacol ; 218: 115904, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37922976

RESUMEN

Angiotensin II (AngII), as an octapeptide hormone normally ionized at physiological pH, cannot cross cell membranes and thus, relies on, two (mainly) G protein-coupled receptor (GPCR) types, AT1R and AT2R, to exert its intracellular effects in various organ systems including the cardiovascular one. Although a lot remains to be elucidated about the signaling of the AT2R, AT1R signaling is known to be remarkably versatile, mobilizing a variety of G protein-dependent and independent signal transduction pathways inside cells to produce a biological outcome. Cardiac AT1R signaling leads to hypertrophy, adverse remodeling, fibrosis, while vascular AT1R signaling raises blood pressure via vasoconstriction, but also elicits hypertrophic, vascular growth/proliferation, and pathological remodeling sets of events. In addition, adrenal AT1R is the major physiological stimulus (alongside hyperkalemia) for secretion of aldosterone, a mineralocorticoid hormone that contributes to hypertension, electrolyte abnormalities, and to pathological remodeling of the failing heart. Regulator of G protein Signaling (RGS) proteins, discovered about 25 years ago as GTPase-activating proteins (GAPs) for the Gα subunits of heterotrimeric G proteins, play a central role in silencing G protein signaling from a plethora of GPCRs, including the AngII receptors. Given the importance of AngII and its receptors, but also of several RGS proteins, in cardiovascular homeostasis, the physiological and pathological significance of RGS protein-mediated modulation of cardiovascular AngII signaling comes as no surprise. In the present review, we provide an overview of the current literature on the involvement of RGS proteins in cardiovascular AngII signaling, by discussing their roles in cardiac (cardiomyocyte and cardiofibroblast), vascular (smooth muscle and endothelial cell), and adrenal (medulla and cortex) AngII signaling, separately. Along the way, we also highlight the therapeutic potential of enhancement of, or, in some cases, inhibition of each RGS protein involved in AngII signaling in each one of these cell types.


Asunto(s)
Sistema Cardiovascular , Proteínas RGS , Humanos , Angiotensina II/metabolismo , Sistema Cardiovascular/metabolismo , Proteínas de Unión al GTP/metabolismo , Hipertrofia , Receptor de Angiotensina Tipo 1/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Transducción de Señal
6.
Ther Adv Cardiovasc Dis ; 17: 17539447231199350, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37724539

RESUMEN

G protein-coupled receptors (GPCRs) play pivotal roles in regulation of cardiac function and homeostasis. To function properly, every cell needs these receptors to be stimulated only when a specific extracellular stimulus is present, and to be silenced the moment that stimulus is removed. The regulator of G protein signaling (RGS) proteins are crucial for the latter to occur at the cell membrane, where the GPCR normally resides. Perturbations in both activation and termination of G protein signaling underlie numerous heart pathologies. Although more than 30 mammalian RGS proteins have been identified, each RGS protein seems to interact only with a specific set of G protein subunits and GPCR types/subtypes in any given tissue or cell type, and this applies to the myocardium as well. A large number of studies have provided substantial evidence for the roles various RGS proteins expressed in cardiomyocytes play in cardiac physiology and heart disease pathophysiology. This review summarizes the current understanding of the functional roles of cardiac RGS proteins and their implications for the treatment of specific heart diseases, such as heart failure and atrial fibrillation. We focus on cardiac RGS4 in particular, since this isoform appears to be selectively (among the RGS protein family) upregulated in human heart failure and is also the target of ongoing drug discovery efforts for the treatment of a variety of diseases.


Asunto(s)
Cardiopatías , Insuficiencia Cardíaca , Proteínas RGS , Animales , Humanos , Proteínas RGS/genética , Proteínas RGS/metabolismo , Transducción de Señal , Corazón , Proteínas de Unión al GTP/metabolismo , Cardiopatías/tratamiento farmacológico , Mamíferos/metabolismo
7.
Expert Rev Clin Pharmacol ; 16(7): 623-630, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37403791

RESUMEN

INTRODUCTION: Cyclic 3', 5'-adenosine monophosphate (cAMP) is a major signaling hub in cardiac physiology. Although cAMP signaling has been extensively studied in cardiac cells and animal models of heart failure (HF), not much is known about its actual amount present inside human failing or non-failing cardiomyocytes. Since many drugs used in HF work via cAMP, it is crucial to determine the status of its intracellular levels in failing vs. normal human hearts. AREAS COVERED: Only studies performed on explanted/excised cardiac tissues from patients were examined. Studies that contained no data from human hearts or no data on cAMP levels per se were excluded from this perspective's analysis. EXPERT OPINION: Currently, there is no consensus on the status of cAMP levels in human failing vs. non-failing hearts. Several studies on animal models may suggest maladaptive (e.g. pro-apoptotic) effects of cAMP on HF, advocating for cAMP lowering for therapy, but human studies almost universally indicate that myocardial cAMP levels are deficient in human failing hearts. It is the expert opinion of this perspective that intracellular cAMP levels are too low in human failing hearts, contributing to the disease. Strategies to increase (restore), not decrease, these levels should be pursued in human HF.


Asunto(s)
AMP Cíclico , Insuficiencia Cardíaca , Animales , Humanos , AMP Cíclico/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Miocardio , Miocitos Cardíacos , Transducción de Señal
8.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37108037

RESUMEN

The goal of this Special Issue is to highlight the ever-increasing progress in pharmacological research on sodium-glucose co-transporter (SGLT) type 2 (SGLT2) inhibitors or gliflozins [...].


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Hipoglucemiantes/farmacología , Sodio , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucosa
9.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047106

RESUMEN

The regulator of G protein signaling (RGS) proteins are crucial for the termination of G protein signals elicited by G protein-coupled receptors (GPCRs). This superfamily of cell membrane receptors, by far the largest and most versatile in mammals, including humans, play pivotal roles in the regulation of cardiac function and homeostasis. Perturbations in both the activation and termination of their G protein-mediated signaling underlie numerous heart pathologies, including heart failure (HF) and atrial fibrillation (AFib). Therefore, RGS proteins play important roles in the pathophysiology of these two devasting cardiac diseases, and several of them could be targeted therapeutically. Although close to 40 human RGS proteins have been identified, each RGS protein seems to interact only with a specific set of G protein subunits and GPCR types/subtypes in any given tissue or cell type. Numerous in vitro and in vivo studies in animal models, and also in diseased human heart tissue obtained from transplantations or tissue banks, have provided substantial evidence of the roles various cardiomyocyte RGS proteins play in cardiac normal homeostasis as well as pathophysiology. One RGS protein in particular, RGS4, has been reported in what are now decades-old studies to be selectively upregulated in human HF. It has also been implicated in protection against AFib via knockout mice studies. This review summarizes the current understanding of the functional roles of cardiac RGS proteins and their implications for the treatment of HF and AFib, with a specific focus on RGS4 for the aforementioned reasons but also because it can be targeted successfully with small organic molecule inhibitors.


Asunto(s)
Fibrilación Atrial , Insuficiencia Cardíaca , Proteínas RGS , Animales , Humanos , Ratones , Proteínas de Unión al GTP/metabolismo , Mamíferos/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Transducción de Señal/fisiología
11.
Curr Issues Mol Biol ; 44(12): 6093-6103, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36547076

RESUMEN

The epicardial adipose tissue (EAT) or epicardial fat is a visceral fat depot in the heart that contains intrinsic adrenergic and cholinergic nerves, through which it interacts with the cardiac sympathetic (adrenergic) and parasympathetic (cholinergic) nervous systems. These EAT nerves represent a significant source of several adipokines and other bioactive molecules, including norepinephrine, epinephrine, and free fatty acids. The production of these molecules is biologically relevant for the heart, since abnormalities in EAT secretion are implicated in the development of pathological conditions, including coronary atherosclerosis, atrial fibrillation, and heart failure. Sympathetic hyperactivity and parasympathetic (cholinergic) derangement are associated with EAT dysfunction, leading to a variety of adverse cardiac conditions, such as heart failure, diastolic dysfunction, atrial fibrillation, etc.; therefore, several studies have focused on exploring the autonomic regulation of EAT as it pertains to heart disease pathogenesis and progression. In addition, Regulator of G protein Signaling (RGS)-4 is a protein with significant regulatory roles in both adrenergic and muscarinic receptor signaling in the heart. In this review, we provide an overview of the autonomic regulation of EAT, with a specific focus on cardiac RGS4 and the potential roles this protein plays in this regulation.

12.
Prog Mol Biol Transl Sci ; 193(1): 145-166, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36357075

RESUMEN

G protein-coupled receptors (GPCRs) play pivotal roles in regulation of cardiovascular homeostasis across all vertebrate species, including humans. In terms of normal cellular function, termination of GPCR signaling via the heterotrimeric G proteins is equally (if not more) important to its stimulation. The Regulator of G protein Signaling (RGS) protein superfamily are indispensable for GPCR signaling cessation at the cell membrane, and thus, for cellular control of GPCR signaling and function. Perturbations in both activation and termination of G protein signaling underlie many examples of cardiovascular dysfunction and heart disease pathogenesis. Despite the plethora of over 30 members comprising the mammalian RGS protein superfamily, each member interacts with a specific set of second messenger pathways and GPCR types/subtypes in a tissue/cell type-specific manner. An increasing number of studies over the past two decades have provided compelling evidence for the involvement of various RGS proteins in physiological regulation of cardiovascular GPCRs and, consequently, also in the pathophysiology of several cardiovascular ailments. This chapter summarizes the current understanding of the functional roles of RGS proteins as they pertain to cardiovascular, i.e., heart, blood vessel, and platelet GPCR function, with a particular focus on their implications for chronic heart failure pathophysiology and therapy.


Asunto(s)
Sistema Cardiovascular , Proteínas de Unión al GTP Heterotriméricas , Proteínas RGS , Humanos , Animales , Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Sistema Cardiovascular/metabolismo , Mamíferos/metabolismo
13.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36232617

RESUMEN

Heart failure (HF) carries the highest mortality in the western world and ß-blockers [ß-adrenergic receptor (AR) antagonists] are part of the cornerstone pharmacotherapy for post-myocardial infarction (MI) chronic HF. Cardiac ß1AR-activated ßarrestin2, a G protein-coupled receptor (GPCR) adapter protein, promotes Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a SUMO (small ubiquitin-like modifier)-ylation and activity, thereby directly increasing cardiac contractility. Given that certain ß-blockers, such as carvedilol and metoprolol, can activate ßarrestins and/or SERCA2a in the heart, we investigated the effects of these two agents on cardiac ßarrestin2-dependent SERCA2a SUMOylation and activity. We found that carvedilol, but not metoprolol, acutely induces ßarrestin2 interaction with SERCA2a in H9c2 cardiomyocytes and in neonatal rat ventricular myocytes (NRVMs), resulting in enhanced SERCA2a SUMOylation. However, this translates into enhanced SERCA2a activity only in the presence of the ß2AR-selective inverse agonist ICI 118,551 (ICI), indicating an opposing effect of carvedilol-occupied ß2AR subtype on carvedilol-occupied ß1AR-stimulated, ßarrestin2-dependent SERCA2a activation. In addition, the amplitude of fractional shortening of NRVMs, transfected to overexpress ßarrestin2, is acutely enhanced by carvedilol, again in the presence of ICI only. In contrast, metoprolol was without effect on NRVMs' shortening amplitude irrespective of ICI co-treatment. Importantly, the pro-contractile effect of carvedilol was also observed in human induced pluripotent stem cell (hIPSC)-derived cardiac myocytes (CMs) overexpressing ßarrestin2, and, in fact, it was present even without concomitant ICI treatment of human CMs. Metoprolol with or without concomitant ICI did not affect contractility of human CMs, either. In conclusion, carvedilol, but not metoprolol, stimulates ßarrestin2-mediated SERCA2a SUMOylation and activity through the ß1AR in cardiac myocytes, translating into direct positive inotropy. However, this unique ßarrestin2-dependent pro-contractile effect of carvedilol may be opposed or masked by carvedilol-bound ß2AR subtype signaling.


Asunto(s)
Insuficiencia Cardíaca , Células Madre Pluripotentes Inducidas , Adenosina Trifosfatasas/metabolismo , Antagonistas Adrenérgicos beta/farmacología , Animales , Carvedilol/farmacología , Insuficiencia Cardíaca/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Metoprolol/metabolismo , Metoprolol/farmacología , Metoprolol/uso terapéutico , Miocitos Cardíacos/metabolismo , Ratas , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Ubiquitinas/metabolismo , Arrestina beta 2/metabolismo
14.
Methods Mol Biol ; 2547: 267-273, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36068469

RESUMEN

α2-Adrenergic receptors (ARs) mediate many cellular actions of epinephrine and norepinephrine, including inhibition of their secretion (sympathetic inhibition) from adrenal chromaffin cells. Like many other G protein-coupled receptors (GPCRs), they undergo agonist-dependent phosphorylation and desensitization by GPCR kinases (GRKs), a phenomenon recently shown to play a major role in the sympathetic overdrive that accompanies and aggravates chronic heart failure. A three-glutamic acid deletion polymorphism in the human α2B-AR subtype gene (Glu301-303) causes impaired agonist-promoted receptor phosphorylation and desensitization, resulting in enhanced signaling to inhibition of cholinergic-induced catecholamine secretion in adrenal chromaffin cells. One of the various pharmacological assays that can be used to quantify and quantitatively compare the degrees of agonist-dependent desensitization, i.e., G protein decoupling, of these two polymorphic α2B-AR variants (or of any two GPCRs for that matter) is the guanosine-5'-O-3-thiotriphosphate (GTPγS) assay that can directly quantify heterotrimeric G protein activation.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas , Norepinefrina , Epinefrina/farmacología , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Norepinefrina/farmacología , Fosforilación
15.
Int J Mol Sci ; 23(10)2022 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-35628613

RESUMEN

Propionic acid is a cell nutrient but also a stimulus for cellular signaling. Free fatty acid receptor (FFAR)-3, also known as GPR41, is a Gi/o protein-coupled receptor (GPCR) that mediates some of the propionate's actions in cells, such as inflammation, fibrosis, and increased firing/norepinephrine release from peripheral sympathetic neurons. The regulator of G-protein Signaling (RGS)-4 inactivates (terminates) both Gi/o- and Gq-protein signaling and, in the heart, protects against atrial fibrillation via calcium signaling attenuation. RGS4 activity is stimulated by ß-adrenergic receptors (ARs) via protein kinase A (PKA)-dependent phosphorylation. Herein, we examined whether RGS4 modulates cardiac FFAR3 signaling/function. We report that RGS4 is essential for dampening of FFAR3 signaling in H9c2 cardiomyocytes, since siRNA-mediated RGS4 depletion significantly enhanced propionate-dependent cAMP lowering, Gi/o activation, p38 MAPK activation, pro-inflammatory interleukin (IL)-1ß and IL-6 production, and pro-fibrotic transforming growth factor (TGF)-ß synthesis. Additionally, catecholamine pretreatment blocked propionic acid/FFAR3 signaling via PKA-dependent activation of RGS4 in H9c2 cardiomyocytes. Finally, RGS4 opposes FFAR3-dependent norepinephrine release from sympathetic-like neurons (differentiated Neuro-2a cells) co-cultured with H9c2 cardiomyocytes, thereby preserving the functional ßAR number of the cardiomyocytes. In conclusion, RGS4 appears essential for propionate/FFAR3 signaling attenuation in both cardiomyocytes and sympathetic neurons, leading to cardioprotection against inflammation/adverse remodeling and to sympatholysis, respectively.


Asunto(s)
Ácidos Grasos no Esterificados , Neuronas , Norepinefrina , Proteínas RGS , Receptores Acoplados a Proteínas G , Señalización del Calcio , Ácidos Grasos no Esterificados/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Humanos , Inflamación/metabolismo , Neuronas/metabolismo , Norepinefrina/metabolismo , Propionatos/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
16.
World J Cardiol ; 14(4): 220-230, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35582468

RESUMEN

BACKGROUND: In the heart, aldosterone (Aldo) binds the mineralocorticoid receptor (MR) to exert damaging, adverse remodeling-promoting effects. We recently showed that G protein-coupled receptor-kinase (GRK)-5 blocks the cardiac MR by directly phosphorylating it, thereby repressing its transcriptional activity. MR antagonist (MRA) drugs block the cardiac MR reducing morbidity and mortality of advanced human heart failure. Non-steroidal MRAs, such as finerenone, may provide better cardio-protection against Aldo than classic, steroidal MRAs, like spironolactone and eplerenone. AIM: To investigate potential differences between finerenone and eplerenone at engaging GRK5-dependent cardiac MR phosphorylation and subsequent blockade. METHODS: We used H9c2 cardiomyocytes, which endogenously express the MR and GRK5. RESULTS: GRK5 phosphorylates the MR in H9c2 cardiomyocytes in response to finerenone but not to eplerenone. Unlike eplerenone, finerenone alone potently and efficiently suppresses cardiac MR transcriptional activity, thus displaying inverse agonism. GRK5 is necessary for finerenone's inverse agonism, since GRK5 genetic deletion renders finerenone incapable of blocking cardiac MR transcriptional activity. Eplerenone alone does not fully suppress cardiac MR basal activity regardless of GRK5 expression levels. Finally, GRK5 is necessary for the anti-apoptotic, anti-oxidative, and anti-fibrotic effects of both finerenone and eplerenone against Aldo, as well as for the higher efficacy and potency of finerenone at blocking Aldo-induced apoptosis, oxidative stress, and fibrosis. CONCLUSION: Finerenone, but not eplerenone, induces GRK5-dependent cardiac MR inhibition, which underlies, at least in part, its higher potency and efficacy, compared to eplerenone, as an MRA in the heart. GRK5 acts as a co-repressor of the cardiac MR and is essential for efficient MR antagonism in the myocardium.

17.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35328722

RESUMEN

Increasing experimental and clinical evidence points toward a very important role for the gut microbiome and its associated metabolism in human health and disease, including in cardiovascular disorders. Free fatty acids (FFAs) are metabolically produced and utilized as energy substrates during almost every biological process in the human body. Contrary to long- and medium-chain FFAs, which are mainly synthesized from dietary triglycerides, short-chain FFAs (SCFAs) derive from the gut microbiota-mediated fermentation of indigestible dietary fiber. Originally thought to serve only as energy sources, FFAs are now known to act as ligands for a specific group of cell surface receptors called FFA receptors (FFARs), thereby inducing intracellular signaling to exert a variety of cellular and tissue effects. All FFARs are G protein-coupled receptors (GPCRs) that play integral roles in the regulation of metabolism, immunity, inflammation, hormone/neurotransmitter secretion, etc. Four different FFAR types are known to date, with FFAR1 (formerly known as GPR40) and FFAR4 (formerly known as GPR120) mediating long- and medium-chain FFA actions, while FFAR3 (formerly GPR41) and FFAR2 (formerly GPR43) are essentially the SCFA receptors (SCFARs), responding to all SCFAs, including acetic acid, propionic acid, and butyric acid. As with various other organ systems/tissues, the important roles the SCFARs (FFAR2 and FFAR3) play in physiology and in various disorders of the cardiovascular system have been revealed over the last fifteen years. In this review, we discuss the cardiovascular implications of some key (patho)physiological functions of SCFAR signaling pathways, particularly those regulating the neurohormonal control of circulation and adipose tissue homeostasis. Wherever appropriate, we also highlight the potential of these receptors as therapeutic targets for cardiovascular disorders.


Asunto(s)
Receptores de Superficie Celular , Receptores Acoplados a Proteínas G , Ácidos Grasos no Esterificados/metabolismo , Ácidos Grasos Volátiles , Humanos , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
18.
J Cardiovasc Pharmacol ; 80(3): 386-392, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34983911

RESUMEN

ABSTRACT: Systolic heart failure (HF) is a chronic clinical syndrome characterized by the reduction in cardiac function and still remains the disease with the highest mortality worldwide. Despite considerable advances in pharmacological treatment, HF represents a severe clinical and social burden. Chronic human HF is characterized by several important neurohormonal perturbations, emanating from both the autonomic nervous system and the adrenal glands. Circulating catecholamines (norepinephrine and epinephrine) and aldosterone elevations are among the salient alterations that confer significant hormonal burden on the already compromised function of the failing heart. This is why sympatholytic treatments (such as ß-blockers) and renin-angiotensin system inhibitors or mineralocorticoid receptor antagonists, which block the effects of angiotensin II (AngII) and aldosterone on the failing heart, are part of the mainstay HF pharmacotherapy presently. The adrenal gland plays an important role in the modulation of cardiac neurohormonal stress because it is the source of almost all aldosterone, of all epinephrine, and of a significant amount of norepinephrine reaching the failing myocardium from the blood circulation. Synthesis and release of these hormones in the adrenals is tightly regulated by adrenal G protein-coupled receptors (GPCRs), such as adrenergic receptors and AngII receptors. In this review, we discuss important aspects of adrenal GPCR signaling and regulation, as they pertain to modulation of cardiac function in the context of chronic HF, by focusing on the 2 best studied adrenal GPCR types in that context, adrenergic receptors and AngII receptors (AT 1 Rs). Particular emphasis is given to findings from the past decade and a half that highlight the emerging roles of the GPCR-kinases and the ß-arrestins in the adrenals, 2 protein families that regulate the signaling and functioning of GPCRs in all tissues, including the myocardium and the adrenal gland.


Asunto(s)
Aldosterona , Insuficiencia Cardíaca , Aldosterona/metabolismo , Epinefrina , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Norepinefrina , Receptores Adrenérgicos/uso terapéutico , Receptores Acoplados a Proteínas G/metabolismo
19.
Pharmacol Res ; 174: 105943, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34662735

RESUMEN

The physiological and pathophysiological roles of the angiotensin II type 1 (AT1) receptor, a G protein-coupled receptor ubiquitously expressed throughout the cardiovascular system, have been the focus of intense investigations for decades. The success of angiotensin converting enzyme inhibitors (ACEIs) and of angiotensin receptor blockers (ARBs), which are AT1R-selective antagonists/inverse agonists, in the treatment of heart disease is a testament to the importance of this receptor for cardiovascular homeostasis. Given the pleiotropic signaling of the cardiovascular AT1R and, in an effort to develop yet better drugs for heart disease, the concept of biased signaling has been exploited to design and develop biased AT1R ligands that selectively activate ß-arrestin transduction pathways over Gq protein-dependent pathways. However, by focusing solely on Gq or ß-arrestins, studies on AT1R "biased" signaling & agonism tend to largely ignore other non-Gq-, non ß-arrestin-dependent signaling modalities the very versatile AT1R employs in cardiovascular tissues, including two very important types of signal transducers/regulators: other G protein types (e.g., Gi/o, G12/13) & the Regulator of G protein Signaling (RGS) proteins. In this review, we provide a brief overview of the current state of cardiovascular AT1R biased signaling field with a special focus on the non-Gq-, non ß-arrestin-dependent signaling avenues of this receptor in the cardiovascular system, which usually get left out of the conversation of "biased" AT1R signal transduction.


Asunto(s)
Receptor de Angiotensina Tipo 1/metabolismo , Glándulas Suprarrenales/metabolismo , Animales , Sistema Cardiovascular/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Humanos , Transducción de Señal , beta-Arrestinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA