Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Astrobiology ; 21(8): 893-905, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34406807

RESUMEN

The physical processes active during the first billion years (FBY) of Earth's history, such as accretion, differentiation, and impact cratering, provide constraints on the initial conditions that were conducive to the formation and establishment of life on Earth. This motivated the Lunar and Planetary Institute's FBY topical initiative, which was a four-part conference series intended to look at each of these physical processes to study the basic structure and composition of our Solar System that was set during the FBY. The FBY Habitability conference, held in September 2019, was the last in this series and was intended to synthesize the initiative; specifically, to further our understanding of the origins of life, planetary and environmental habitability, and the search for life beyond Earth. The conference included discussions of planetary habitability and the potential emergence of life on bodies within our Solar System, as well as extrasolar systems by applying our knowledge of the Solar System's FBY, and in particular Earth's early history. To introduce this Special Collection, which resulted from work discussed at the conference, we provide a review of the main themes and a synopsis of the FBY Habitability conference.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Planeta Tierra , Planetas , Sistema Solar
2.
Astrobiology ; 21(8): 1017-1027, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34382857

RESUMEN

Habitability has been generally defined as the capability of an environment to support life. Ecologists have been using Habitat Suitability Models (HSMs) for more than four decades to study the habitability of Earth from local to global scales. Astrobiologists have been proposing different habitability models for some time, with little integration and consistency among them, being different in function to those used by ecologists. Habitability models are not only used to determine whether environments are habitable, but they also are used to characterize what key factors are responsible for the gradual transition from low to high habitability states. Here we review and compare some of the different models used by ecologists and astrobiologists and suggest how they could be integrated into new habitability standards. Such standards will help improve the comparison and characterization of potentially habitable environments, prioritize target selections, and study correlations between habitability and biosignatures. Habitability models are the foundation of planetary habitability science, and the synergy between ecologists and astrobiologists is necessary to expand our understanding of the habitability of Earth, the Solar System, and extrasolar planets.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Planeta Tierra , Planetas
3.
Astrobiology ; 19(5): 629-641, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30822097

RESUMEN

The presence of perchlorate on Mars suggests a possible energy source for sustaining microbial life. Perchlorate-reducing microbes have been isolated from perchlorate-contaminated soils and sediments on the Earth, but to date, never from an environment that is naturally enriched in perchlorate. The arid Pilot Valley paleolake basin in Utah is a Mars analog environment whose sediments are naturally enriched with up to ∼6.5 µg kg-1 perchlorate oxyanions. Here, we present results of field and laboratory studies indicating that perchlorate-reducing microorganisms co-occur with this potential electron acceptor. Biogeochemical data suggest ongoing perchlorate reduction; phylogenetic data indicate the presence of diverse microbial communities; and laboratory enrichments using Pilot Valley sediments show that resident microbes can reduce perchlorate. This is the first article of the co-existence of perchlorate-reducing microbes in an environment where perchlorate occurs naturally, arguing for Pilot Valley's utility as an analog for studying biogeochemical processes that may have occurred, and may yet still be occurring, in ancient martian lacustrine sediments.


Asunto(s)
Medio Ambiente Extraterrestre , Sedimentos Geológicos/microbiología , Marte , Microbiota/fisiología , Percloratos/metabolismo , Exobiología/métodos , Sedimentos Geológicos/química , Oxidación-Reducción , Percloratos/análisis , Utah
4.
Astrobiology ; 17(4): 363-400, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28177270

RESUMEN

This review of material relevant to the Conference on Biosignature Preservation and Detection in Mars Analog Environments summarizes the meeting materials and discussions and is further expanded upon by detailed references to the published literature. From this diverse source material, there is a detailed discussion on the habitability and biosignature preservation potential of five primary analog environments: hydrothermal spring systems, subaqueous environments, subaerial environments, subsurface environments, and iron-rich systems. Within the context of exploring past habitable environments on Mars, challenges common to all of these key environments are laid out, followed by a focused discussion for each environment regarding challenges to orbital and ground-based observations and sample selection. This leads into a short section on how these challenges could influence our strategies and priorities for the astrobiological exploration of Mars. Finally, a listing of urgent needs and future research highlights key elements such as development of instrumentation as well as continued exploration into how Mars may have evolved differently from Earth and what that might mean for biosignature preservation and detection. Key Words: Biosignature preservation-Biosignature detection-Mars analog environments-Conference report-Astrobiological exploration. Astrobiology 17, 363-400.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Marte , Planeta Tierra , Hierro/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...