Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Struct Dyn ; 3(2): 023609, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27158634

RESUMEN

Using polarization-selective two-dimensional infrared (2D IR) and infrared pump-probe spectroscopies, we study vibrational relaxation of the four cyanide stretching (νCN) vibrations found in [(NH3)5Ru(III)NCFe(II)(CN)5](-) (FeRu) dissolved in D2O or formamide and [(NC)5Fe(II)CNPt(IV)(NH3)4NCFe(II)(CN)5](4-) (FePtFe) dissolved in D2O. These cyanide-bridged transition metal complexes serve as models for understanding the role high frequency vibrational modes play in metal-to-metal charge transfers over a bridging ligand. However, there is currently little information about vibrational relaxation and dephasing dynamics of the anharmonically coupled νCN modes in the electronic ground state of these complexes. IR pump-probe experiments reveal that the vibrational lifetimes of the νCN modes are ∼2 times faster when FeRu is dissolved in D2O versus formamide. They also reveal that the vibrational lifetimes of the νCN modes of FePtFe in D2O are almost four times as long as for FeRu in D2O. Combined with mode-specific relaxation dynamics measured from the 2D IR experiments, the IR pump-probe experiments also reveal that intramolecular vibrational relaxation is occurring in all three systems on ∼1 ps timescale. Center line slope dynamics, which have been shown to be a measure of the frequency-frequency correlation function, reveal that the radial, axial, and trans νCN modes exhibit a ∼3 ps timescale for frequency fluctuations. This timescale is attributed to the forming and breaking of hydrogen bonds between each mode and the solvent. The results presented here along with our previous work on FeRu and FePtFe reveal a picture of coupled anharmonic νCN modes where the spectral diffusion and vibrational relaxation dynamics depend on the spatial localization of the mode on the molecular complex and its specific interaction with the solvent.

2.
J Chem Phys ; 140(8): 084505, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24588183

RESUMEN

Using polarization-selective two-dimensional infrared (2D IR) spectroscopy, we measure anharmonic couplings and angles between the transition dipole moments of the four cyanide stretching (νCN) vibrations found in [(NH3)5Ru(III)NCFe(II)(CN)5](-) (FeRu) dissolved in D2O and formamide and [(NC)5Fe(II)CNPt(IV)(NH3)4NCFe(II)(CN)5](4-) (FePtFe) dissolved in D2O. These cyanide-bridged transition metal complexes serve as model systems for studying the role of high frequency vibrational modes in ultrafast photoinduced charge transfer reactions. Here, we focus on the spectroscopy of the νCN modes in the electronic ground state. The FTIR spectra of the νCN modes of the bimetallic and trimetallic systems are strikingly different in terms of frequencies, amplitudes, and lineshapes. The experimental 2D IR spectra of FeRu and FePtFe and their fits reveal a set of weakly coupled anharmonic νCN modes. The vibrational mode anharmonicities of the individual νCN modes range from 14 to 28 cm(-1). The mixed-mode anharmonicities range from 2 to 14 cm(-1). In general, the bridging νCN mode is most weakly coupled to the radial νCN mode, which involves the terminal CN ligands. Measurement of the relative transition dipole moments of the four νCN modes reveal that the FeRu molecule is almost linear in solution when dissolved in formamide, but it assumes a bent geometry when dissolved in D2O. The νCN modes are modelled as bilinearly coupled anharmonic oscillators with an average coupling constant of 6 cm(-1). This study elucidates the role of the solvent in modulating the molecular geometry and the anharmonic vibrational couplings between the νCN modes in cyanide-bridged transition metal mixed valence complexes.

3.
J Phys Chem A ; 117(29): 6234-43, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23480848

RESUMEN

The vibrational dephasing dynamics of the nitrosyl stretching vibration (ν(NO)) in sodium nitroprusside (SNP, Na2[Fe(CN)5NO]·2H2O) are investigated using two-dimensional infrared (2D IR) spectroscopy. The ν(NO) in SNP acts as a model system for the nitrosyl ligand found in metalloproteins which play an important role in the transportation and detection of nitric oxide (NO) in biological systems. We perform a 2D IR line shape study of the ν(NO) in the following solvents: water, deuterium oxide, methanol, ethanol, ethylene glycol, formamide, and dimethyl sulfoxide. The frequency of the ν(NO) exhibits a large vibrational solvatochromic shift of 52 cm(-1), ranging from 1884 cm(-1) in dimethyl sulfoxide to 1936 cm(-1) in water. The vibrational anharmonicity of the ν(NO) varies from 21 to 28 cm(-1) in the solvents used in this study. The frequency-frequency correlation functions (FFCFs) of the ν(NO) in SNP in each of the seven solvents are obtained by fitting the experimentally obtained 2D IR spectra using nonlinear response theory. The fits to the 2D IR line shape reveal that the spectral diffusion time scale of the ν(NO) in SNP varies from 0.8 to 4 ps and is negatively correlated with the empirical solvent polarity scales. We compare our results with the experimentally determined FFCFs of other charged vibrational probes in polar solvents and in the active sites of heme proteins. Our results suggest that the vibrational dephasing dynamics of the ν(NO) in SNP reflect the fluctuations of the nonhomogeneous electric field created by the polar solvents around the nitrosyl and cyanide ligands. The solute solvent interactions occurring at the trans-CN ligand are sensed through the π-back-bonding network along the Fe-NO bond in SNP.

4.
J Chem Phys ; 136(24): 241101, 2012 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-22755557

RESUMEN

Fifth-order nonlinear visible-infrared spectroscopy is used to probe coherent and incoherent vibrational energy relaxation dynamics of highly excited vibrational modes indirectly populated via ultrafast photoinduced back-electron transfer in a trinuclear cyano-bridged mixed-valence complex. The flow of excess energy deposited into four C≡N stretching (ν(CN)) modes of the molecule is monitored by performing an IR pump-probe experiment as a function of the photochemical reaction (τ(vis)). Our results provide experimental evidence that the nuclear motions of the molecule are both coherently and incoherently coupled to the electronic charge transfer process. We observe that intramolecular vibrational relaxation dynamics among the highly excited ν(CN) modes change significantly en route to equilibrium. The experiment also measures a 7 cm(-1) shift in the frequency of a ∼57 cm(-1) oscillation reflecting a modulation of the coupling between the probed high-frequency ν(CN) modes for τ(vis) < 500 fs.

5.
J Phys Chem A ; 116(26): 7023-32, 2012 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-22642262

RESUMEN

Obtaining a detailed description of photochemical reactions in solution requires measuring time-evolving structural dynamics of transient chemical species on ultrafast time scales. Time-resolved vibrational spectroscopies are sensitive probes of molecular structure and dynamics in solution. In this work, we develop doubly resonant fifth-order nonlinear visible-infrared spectroscopies to probe nonequilibrium vibrational dynamics among coupled high-frequency vibrations during an ultrafast charge transfer process using a heterodyne detection scheme. The method enables the simultaneous collection of third- and fifth-order signals, which respectively measure vibrational dynamics occurring on electronic ground and excited states on a femtosecond time scale. Our data collection and analysis strategy allows transient dispersed vibrational echo (t-DVE) and dispersed pump-probe (t-DPP) spectra to be extracted as a function of electronic and vibrational population periods with high signal-to-noise ratio (S/N > 25). We discuss how fifth-order experiments can measure (i) time-dependent anharmonic vibrational couplings, (ii) nonequilibrium frequency-frequency correlation functions, (iii) incoherent and coherent vibrational relaxation and transfer dynamics, and (iv) coherent vibrational and electronic (vibronic) coupling as a function of a photochemical reaction.

6.
J Phys Chem Lett ; 3(12): 1695-700, 2012 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-26285730

RESUMEN

This study uses transient X-ray absorption (XA) spectroscopy and time-dependent density functional theory (TD-DFT) to directly visualize the charge density around the metal atom and the surrounding ligands following an ultrafast metal-to-ligand charge-transfer (MLCT) process in the widely used Ru(II) solar cell dye, Ru(dcbpy)2(NCS)2 (termed N3). We measure the Ru L-edge XA spectra of the singlet ground ((1)A1) and the transient triplet ((3)MLCT) excited state of N3(4-) and perform TD-DFT calculations of 2p core-level excitations, which identify a unique spectral signature of the electron density on the NCS ligands. We find that the Ru 2p, Ru eg, and NCS π* orbitals are stabilized by 2.0, 1.0, and 0.6 eV, respectively, in the transient (3)MLCT state of the dye. These results highlight the role of the NCS ligands in governing the oxidation state of the Ru center.

7.
J Am Chem Soc ; 133(14): 5255-62, 2011 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-21417354

RESUMEN

We study photoinduced metal-nitrosyl linkage isomerism in sodium nitroprusside (Na(2)[Fe(II)(CN)(5)NO]·2H(2)O, SNP) dissolved in methanol using picosecond transient infrared (IR) spectroscopy. The high sensitivity of this technique allows the simultaneous observation of two known metastable (MS) iron-nitrosyl linkage isomers of SNP, [Fe(II)(CN)(5)(η(1)-ON)](2-) (MS1) and [Fe(II)(CN)(5)(η(2)-NO)](2-) (MS2), at room temperature. The transient population of free nitrosyl radicals (NO·) is also measured in the sample solution. These three transient species are detected using their distinct nitrosyl stretching frequencies at 1794 cm(-1) (MS1), 1652 cm(-1) (MS2), and 1851 cm(-1) (NO·). The metastable isomers and NO· are formed on a subpicosecond time scale and have lifetimes greater than 100 ns. A UV (400 nm)-pump power dependence study reveals that MS1 can be formed with one photon, while MS2 requires two photons to be populated at room temperature in solution. Other photodissociation products including cyanide ion, Prussian blue, and [Fe(III)(CN)(5)(CH(3)OH)](2-) are observed. We develop a photochemical kinetic scheme to model our data, and the analysis reveals that photoisomerization and photodissociation of the metal-NO moiety are competing photochemical pathways in SNP dissolved in methanol at room temperature. Based on the analysis, the solvent-associated Fe(III) species and Prussian blue form on a 130 and 320 ps time scale, respectively. The simultaneous detection and characterization of photoinduced linkage isomerism (MS1 and MS2) and photodissociation of the metal-NO bond in SNP highlights the importance of understanding the role played by metastable metal-nitrosyl linkage isomers in the photochemistry of metal-nitrosyl compounds in chemistry and biology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA