Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
bioRxiv ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38948734

RESUMEN

Comprehensive molecular and cellular phenotyping of human islets can enable deep mechanistic insights for diabetes research. We established the Human Islet Data Analysis and Sharing (HI-DAS) consortium to advance goals in accessibility, usability, and integration of data from human islets isolated from donors with and without diabetes at the Alberta Diabetes Institute (ADI) IsletCore. Here we introduce HumanIslets.com , an open resource for the research community. This platform, which presently includes data on 547 human islet donors, allows users to access linked datasets describing molecular profiles, islet function and donor phenotypes, and to perform various statistical and functional analyses at the donor, islet and single-cell levels. As an example of the analytic capacity of this resource we show a dissociation between cell culture effects on transcript and protein expression, and an approach to correct for exocrine contamination found in hand-picked islets. Finally, we provide an example workflow and visualization that highlights links between type 2 diabetes status, SERCA3b Ca 2+ -ATPase levels at the transcript and protein level, insulin secretion and islet cell phenotypes. HumanIslets.com provides a growing and adaptable set of resources and tools to support the metabolism and diabetes research community.

2.
Cell Metab ; 36(7): 1619-1633.e5, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38959864

RESUMEN

Population-level variation and mechanisms behind insulin secretion in response to carbohydrate, protein, and fat remain uncharacterized. We defined prototypical insulin secretion responses to three macronutrients in islets from 140 cadaveric donors, including those with type 2 diabetes. The majority of donors' islets exhibited the highest insulin response to glucose, moderate response to amino acid, and minimal response to fatty acid. However, 9% of donors' islets had amino acid responses, and 8% had fatty acid responses that were larger than their glucose-stimulated insulin responses. We leveraged this heterogeneity and used multi-omics to identify molecular correlates of nutrient responsiveness, as well as proteins and mRNAs altered in type 2 diabetes. We also examined nutrient-stimulated insulin release from stem cell-derived islets and observed responsiveness to fat but not carbohydrate or protein-potentially a hallmark of immaturity. Understanding the diversity of insulin responses to carbohydrate, protein, and fat lays the groundwork for personalized nutrition.


Asunto(s)
Diabetes Mellitus Tipo 2 , Secreción de Insulina , Insulina , Islotes Pancreáticos , Proteómica , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Femenino , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Persona de Mediana Edad , Nutrientes/metabolismo , Adulto , Glucosa/metabolismo , Anciano , Ácidos Grasos/metabolismo
3.
Islets ; 16(1): 2361996, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38833523

RESUMEN

Epidemiological studies consistently link environmental toxicant exposure with increased Type 2 diabetes risk. Our study investigated the diabetogenic effects of a widely used flame retardant, Dechlorane Plus (DP), on pancreatic ß-cells using rodent and human model systems. We first examined pancreas tissues from male mice exposed daily to oral gavage of either vehicle (corn oil) or DP (10, 100, or 1000 µg/kg per day) and fed chow or high fat diet for 28-days in vivo. DP exposure did not affect islet size or endocrine cell composition in either diet group. Next, we assessed the effect of 48-hour exposure to vehicle (DMSO) or DP (1, 10, or 100 nM) in vitro using immortalized rat ß-cells (INS-1 832/3), primary mouse and human islets, and human stem-cell derived islet-like cells (SC-islets). In INS-1 832/3 cells, DP did not impact glucose-stimulated insulin secretion (GSIS) but significantly decreased intracellular insulin content. DP had no effect on GSIS in mouse islets or SC-islets but had variable effects on GSIS in human islets depending on the donor. DP alone did not affect insulin content in mouse islets, human islets, or SC-islets, but mouse islets co-exposed to DP and glucolipotoxic (GLT) stress conditions (28.7 mM glucose + 0.5 mM palmitate) had reduced insulin content compared to control conditions. Co-exposure of mouse islets to DP + GLT amplified the upregulation of Slc30a8 compared to GLT alone. Our study highlights the importance and challenges of using different in vitro models for studying chemical toxicity.


Asunto(s)
Hidrocarburos Clorados , Células Secretoras de Insulina , Compuestos Policíclicos , Animales , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Humanos , Ratones , Masculino , Compuestos Policíclicos/farmacología , Hidrocarburos Clorados/toxicidad , Ratas , Insulina/metabolismo , Retardadores de Llama/toxicidad , Secreción de Insulina/efectos de los fármacos , Ratones Endogámicos C57BL , Células Cultivadas
4.
medRxiv ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38496562

RESUMEN

Population level variation and molecular mechanisms behind insulin secretion in response to carbohydrate, protein, and fat remain uncharacterized despite ramifications for personalized nutrition. Here, we define prototypical insulin secretion dynamics in response to the three macronutrients in islets from 140 cadaveric donors, including those diagnosed with type 2 diabetes. While islets from the majority of donors exhibited the expected relative response magnitudes, with glucose being highest, amino acid moderate, and fatty acid small, 9% of islets stimulated with amino acid and 8% of islets stimulated with fatty acids had larger responses compared with high glucose. We leveraged this insulin response heterogeneity and used transcriptomics and proteomics to identify molecular correlates of specific nutrient responsiveness, as well as those proteins and mRNAs altered in type 2 diabetes. We also examine nutrient-responsiveness in stem cell-derived islet clusters and observe that they have dysregulated fuel sensitivity, which is a hallmark of functionally immature cells. Our study now represents the first comparison of dynamic responses to nutrients and multi-omics analysis in human insulin secreting cells. Responses of different people's islets to carbohydrate, protein, and fat lay the groundwork for personalized nutrition. ONE-SENTENCE SUMMARY: Deep phenotyping and multi-omics reveal individualized nutrient-specific insulin secretion propensity.

5.
Diabetologia ; 67(1): 156-169, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37870650

RESUMEN

AIMS/HYPOTHESIS: Glucagon-expressing pancreatic alpha cells have attracted much attention for their plasticity to transdifferentiate into insulin-producing beta cells; however, it remains unclear precisely when, and from where, alpha cells emerge and what regulates alpha cell fate. We therefore explored the spatial and transcriptional heterogeneity of alpha cell differentiation using a novel time-resolved reporter system. METHODS: We established the mouse model, 'Gcg-Timer', in which newly generated alpha cells can be distinguished from more-differentiated cells by their fluorescence. Fluorescence imaging and transcriptome analysis were performed with Gcg-Timer mice during the embryonic and postnatal stages. RESULTS: Fluorescence imaging and flow cytometry demonstrated that green fluorescence-dominant cells were present in Gcg-Timer mice at the embryonic and neonatal stages but not after 1 week of age, suggesting that alpha cell neogenesis occurs during embryogenesis and early neonatal stages under physiological conditions. Transcriptome analysis of Gcg-Timer embryos revealed that the mRNAs related to angiogenesis were enriched in newly generated alpha cells. Histological analysis revealed that some alpha cells arise close to the pancreatic ducts, whereas the others arise away from the ducts and adjacent to the blood vessels. Notably, when the glucagon signal was suppressed by genetic ablation or by chemicals, such as neutralising glucagon antibody, green-dominant cells emerged again in adult mice. CONCLUSIONS/INTERPRETATION: Novel time-resolved analysis with Gcg-Timer reporter mice uncovered spatiotemporal features of alpha cell neogenesis that will enhance our understanding of cellular identity and plasticity within the islets. DATA AVAILABILITY: Raw and processed RNA sequencing data for this study has been deposited in the Gene Expression Omnibus under accession number GSE229090.


Asunto(s)
Células Secretoras de Glucagón , Células Secretoras de Insulina , Islotes Pancreáticos , Ratones , Animales , Glucagón/metabolismo , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Diferenciación Celular/genética , Perfilación de la Expresión Génica , Islotes Pancreáticos/metabolismo
6.
Transplantation ; 107(9): e222-e233, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528526

RESUMEN

BACKGROUND: Type 1 diabetes is an autoimmune disease characterized by T-cell-mediated destruction of pancreatic beta-cells. Islet transplantation is an effective therapy, but its success is limited by islet quality and availability along with the need for immunosuppression. New approaches include the use of stem cell-derived insulin-producing cells and immunomodulatory therapies, but a limitation is the paucity of reproducible animal models in which interactions between human immune cells and insulin-producing cells can be studied without the complication of xenogeneic graft-versus-host disease (xGVHD). METHODS: We expressed an HLA-A2-specific chimeric antigen receptor (A2-CAR) in human CD4 + and CD8 + T cells and tested their ability to reject HLA-A2 + islets transplanted under the kidney capsule or anterior chamber of the eye of immunodeficient mice. T-cell engraftment, islet function, and xGVHD were assessed longitudinally. RESULTS: The speed and consistency of A2-CAR T-cell-mediated islet rejection varied depending on the number of A2-CAR T cells and the absence/presence of coinjected peripheral blood mononuclear cells (PBMCs). When <3 million A2-CAR T cells were injected, coinjection of PBMCs accelerated islet rejection but also induced xGVHD. In the absence of PBMCs, injection of 3 million A2-CAR T cells caused synchronous rejection of A2 + human islets within 1 wk and without xGVHD for 12 wk. CONCLUSIONS: Injection of A2-CAR T cells can be used to study rejection of human insulin-producing cells without the complication of xGVHD. The rapidity and synchrony of rejection will facilitate in vivo screening of new therapies designed to improve the success of islet-replacement therapies.


Asunto(s)
Enfermedad Injerto contra Huésped , Insulinas , Trasplante de Islotes Pancreáticos , Receptores Quiméricos de Antígenos , Humanos , Ratones , Animales , Antígeno HLA-A2 , Leucocitos Mononucleares , Rechazo de Injerto/prevención & control
8.
iScience ; 26(8): 107311, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37520700

RESUMEN

Restoring functional ß cell mass is a potential therapy for those with diabetes. However, the pathways regulating ß cell mass are not fully understood. Previously, we demonstrated that Sox4 is required for ß cell proliferation during prediabetes. Here, we report that Sox4 regulates ß cell mass through modulating expression of the type 2 diabetes (T2D) susceptibility gene GRK5. ß cell-specific Grk5 knockout mice showed impaired glucose tolerance with reduced ß cell mass, which was accompanied by upregulation of cell cycle inhibitor gene Cdkn1a. Furthermore, we found that Grk5 may drive ß cell proliferation through a pathway that includes phosphorylation of HDAC5 and subsequent transcription of immediate-early genes (IEGs) such as Nr4a1, Fosb, Junb, Arc, Egr1, and Srf. Together, these studies suggest GRK5 is linked to T2D through regulation of ß cell growth and that it may be a target to preserve ß cells during the development of T2D.

9.
Diabetologia ; 66(6): 1097-1115, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36912927

RESUMEN

AIMS/HYPOTHESIS: Beta cells control glucose homeostasis via regulated production and secretion of insulin. This function arises from a highly specialised gene expression programme that is established during development and then sustained, with limited flexibility, in terminally differentiated cells. Dysregulation of this programme is seen in type 2 diabetes but mechanisms that preserve gene expression or underlie its dysregulation in mature cells are not well resolved. This study investigated whether methylation of histone H3 lysine 4 (H3K4), a marker of gene promoters with unresolved functional importance, is necessary for the maintenance of mature beta cell function. METHODS: Beta cell function, gene expression and chromatin modifications were analysed in conditional Dpy30 knockout mice, in which H3K4 methyltransferase activity is impaired, and in a mouse model of diabetes. RESULTS: H3K4 methylation maintains expression of genes that are important for insulin biosynthesis and glucose responsiveness. Deficient methylation of H3K4 leads to a less active and more repressed epigenome profile that locally correlates with gene expression deficits but does not globally reduce gene expression. Instead, developmentally regulated genes and genes in weakly active or suppressed states particularly rely on H3K4 methylation. We further show that H3K4 trimethylation (H3K4me3) is reorganised in islets from the Leprdb/db mouse model of diabetes in favour of weakly active and disallowed genes at the expense of terminal beta cell markers with broad H3K4me3 peaks. CONCLUSIONS/INTERPRETATION: Sustained methylation of H3K4 is critical for the maintenance of beta cell function. Redistribution of H3K4me3 is linked to gene expression changes that are implicated in diabetes pathology.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insulinas , Ratones , Animales , Histonas/metabolismo , Metilación , Lisina/metabolismo , Diabetes Mellitus Tipo 2/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo
10.
Stem Cell Reports ; 18(3): 765-781, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36801003

RESUMEN

Improving methods for human embryonic stem cell differentiation represents a challenge in modern regenerative medicine research. Using drug repurposing approaches, we discover small molecules that regulate the formation of definitive endoderm. Among them are inhibitors of known processes involved in endoderm differentiation (mTOR, PI3K, and JNK pathways) and a new compound, with an unknown mechanism of action, capable of inducing endoderm formation in the absence of growth factors in the media. Optimization of the classical protocol by inclusion of this compound achieves the same differentiation efficiency with a 90% cost reduction. The presented in silico procedure for candidate molecule selection has broad potential for improving stem cell differentiation protocols.


Asunto(s)
Endodermo , Células Madre Embrionarias Humanas , Humanos , Diferenciación Celular/fisiología
11.
Mol Metab ; 68: 101667, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36621763

RESUMEN

OBJECTIVES: Pancreatic cancer risk is elevated approximately two-fold in type 1 and type 2 diabetes. Islet amyloid polypeptide (IAPP) is an abundant beta-cell peptide hormone that declines with diabetes progression. IAPP has been reported to act as a tumour-suppressor in p53-deficient cancers capable of regressing tumour volumes. Given the decline of IAPP during diabetes development, we investigated the actions of IAPP in pancreatic ductal adenocarcinoma (PDAC; the most common form of pancreatic cancer) to determine if IAPP loss in diabetes may increase the risk of pancreatic cancer. METHODS: PANC-1, MIA PaCa-2, and H1299 cells were treated with rodent IAPP, and the IAPP analogs pramlintide and davalintide, and assayed for changes in proliferation, death, and glycolysis. An IAPP-deficient mouse model of PDAC (Iapp-/-; Kras+/LSL-G12D; Trp53flox/flox; Ptf1a+/CreER) was generated for survival analysis. RESULTS: IAPP did not impact glycolysis in MIA PaCa-2 cells, and did not impact cell death, proliferation, or glycolysis in PANC-1 cells or in H1299 cells, which were previously reported as IAPP-sensitive. Iapp deletion in Kras+/LSL-G12D; Trp53flox/flox; Ptf1a+/CreER mice had no effect on survival time to lethal tumour burden. CONCLUSIONS: In contrast to previous reports, we find that IAPP does not function as a tumour suppressor. This suggests that loss of IAPP signalling likely does not increase the risk of pancreatic cancer in individuals with diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neoplasias Pancreáticas , Ratones , Animales , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas
12.
JCI Insight ; 7(24)2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36546480

RESUMEN

Primary atopic disorders are a group of inborn errors of immunity that skew the immune system toward severe allergic disease. Defining the biology underlying these extreme monogenic phenotypes reveals shared mechanisms underlying common polygenic allergic disease and identifies potential drug targets. Germline gain-of-function (GOF) variants in JAK1 are a cause of severe atopy and eosinophilia. Modeling the JAK1GOF (p.A634D) variant in both zebrafish and human induced pluripotent stem cells (iPSCs) revealed enhanced myelopoiesis. RNA-Seq of JAK1GOF human whole blood, iPSCs, and transgenic zebrafish revealed a shared core set of dysregulated genes involved in IL-4, IL-13, and IFN signaling. Immunophenotypic and transcriptomic analysis of patients carrying a JAK1GOF variant revealed marked Th cell skewing. Moreover, long-term ruxolitinib treatment of 2 children carrying the JAK1GOF (p.A634D) variant remarkably improved their growth, eosinophilia, and clinical features of allergic inflammation. This work highlights the role of JAK1 signaling in atopic immune dysregulation and the clinical impact of JAK1/2 inhibition in treating eosinophilic and allergic disease.


Asunto(s)
Eosinofilia , Hipersensibilidad Inmediata , Hipersensibilidad , Células Madre Pluripotentes Inducidas , Niño , Animales , Humanos , Mutación con Ganancia de Función , Pez Cebra , Hipersensibilidad/genética , Inflamación/genética , Eosinofilia/genética , Janus Quinasa 1/genética
13.
Diabetes ; 71(12): 2612-2631, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36170671

RESUMEN

Transcriptional and functional cellular specialization has been described for insulin-secreting ß-cells of the endocrine pancreas. However, it is not clear whether ß-cell heterogeneity is stable or reflects dynamic cellular states. We investigated the temporal kinetics of endogenous insulin gene activity using live cell imaging, with complementary experiments using FACS and single-cell RNA sequencing, in ß-cells from Ins2GFP knockin mice. In vivo staining and FACS analysis of islets from Ins2GFP mice confirmed that at a given moment, ∼25% of ß-cells exhibited significantly higher activity at the evolutionarily conserved insulin gene, Ins2. Live cell imaging over days captured Ins2 gene activity dynamics in single ß-cells. Autocorrelation analysis revealed a subset of oscillating cells, with mean oscillation periods of 17 h. Increased glucose concentrations stimulated more cells to oscillate and resulted in higher average Ins2 gene activity per cell. Single-cell RNA sequencing showed that Ins2(GFP)HIGH ß-cells were enriched for markers of ß-cell maturity. Ins2(GFP)HIGH ß-cells were also significantly less viable at all glucose concentrations and in the context of endoplasmic reticulum stress. Collectively, our results demonstrate that the heterogeneity of insulin production, observed in mouse and human ß-cells, can be accounted for by dynamic states of insulin gene activity.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Ratones , Humanos , Animales , Insulina/genética , Estrés del Retículo Endoplásmico , Glucosa/farmacología
14.
Proc Natl Acad Sci U S A ; 119(29): e2200553119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858317

RESUMEN

Loss of activity of the lysosomal glycosidase ß-glucocerebrosidase (GCase) causes the lysosomal storage disease Gaucher disease (GD) and has emerged as the greatest genetic risk factor for the development of both Parkinson disease (PD) and dementia with Lewy bodies. There is significant interest into how GCase dysfunction contributes to these diseases, however, progress toward a full understanding is complicated by presence of endogenous cellular factors that influence lysosomal GCase activity. Indeed, such factors are thought to contribute to the high degree of variable penetrance of GBA mutations among patients. Robust methods to quantitatively measure GCase activity within lysosomes are therefore needed to advance research in this area, as well as to develop clinical assays to monitor disease progression and assess GCase-directed therapeutics. Here, we report a selective fluorescence-quenched substrate, LysoFQ-GBA, which enables measuring endogenous levels of lysosomal GCase activity within living cells. LysoFQ-GBA is a sensitive tool for studying chemical or genetic perturbations of GCase activity using either fluorescence microscopy or flow cytometry. We validate the quantitative nature of measurements made with LysoFQ-GBA using various cell types and demonstrate that it accurately reports on both target engagement by GCase inhibitors and the GBA allele status of cells. Furthermore, through comparisons of GD, PD, and control patient-derived tissues, we show there is a close correlation in the lysosomal GCase activity within monocytes, neuronal progenitor cells, and neurons. Accordingly, analysis of clinical blood samples using LysoFQ-GBA may provide a surrogate marker of lysosomal GCase activity in neuronal tissue.


Asunto(s)
Enfermedad de Gaucher , Glucosilceramidasa , Enfermedad de Parkinson , Enfermedad de Gaucher/enzimología , Enfermedad de Gaucher/genética , Glucosilceramidasa/análisis , Glucosilceramidasa/genética , Humanos , Cuerpos de Lewy/enzimología , Enfermedad por Cuerpos de Lewy/enzimología , Lisosomas/enzimología , Mutación , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/genética , Especificidad por Sustrato , alfa-Sinucleína/metabolismo
15.
Diabetologia ; 65(9): 1519-1533, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35616696

RESUMEN

AIMS/HYPOTHESIS: Pancreatic islets depend on cytosolic calcium (Ca2+) to trigger the secretion of glucoregulatory hormones and trigger transcriptional regulation of genes important for islet response to stimuli. To date, there has not been an attempt to profile Ca2+-regulated gene expression in all islet cell types. Our aim was to construct a large single-cell transcriptomic dataset from human islets exposed to conditions that would acutely induce or inhibit intracellular Ca2+ signalling, while preserving biological heterogeneity. METHODS: We exposed intact human islets from three donors to the following conditions: (1) 2.8 mmol/l glucose; (2) 16 mmol/l glucose and 40 mmol/l KCl to maximally stimulate Ca2+ signalling; and (3) 16 mmol/l glucose, 40 mmol/l KCl and 5 mmol/l EGTA (Ca2+ chelator) to inhibit Ca2+ signalling, for 1 h. We sequenced 68,650 cells from all islet cell types, and further subsetted the cells to form an endocrine cell-specific dataset of 59,373 cells expressing INS, GCG, SST or PPY. We compared transcriptomes across conditions to determine the differentially expressed Ca2+-regulated genes in each endocrine cell type, and in each endocrine cell subcluster of alpha and beta cells. RESULTS: Based on the number of Ca2+-regulated genes, we found that each alpha and beta cell cluster had a different magnitude of Ca2+ response. We also showed that polyhormonal clusters expressing both INS and GCG, or both INS and SST, are defined by Ca2+-regulated genes specific to each cluster. Finally, we identified the gene PCDH7 from the beta cell clusters that had the highest number of Ca2+-regulated genes, and showed that cells expressing cell surface PCDH7 protein have enhanced glucose-stimulated insulin secretory function. CONCLUSIONS/INTERPRETATION: Here we use our large-scale, multi-condition, single-cell dataset to show that human islets have cell-type-specific Ca2+-regulated gene expression profiles, some of them specific to subpopulations. In our dataset, we identify PCDH7 as a novel marker of beta cells having an increased number of Ca2+-regulated genes and enhanced insulin secretory function. DATA AVAILABILITY: A searchable and user-friendly format of the data in this study, specifically designed for rapid mining of single-cell RNA sequencing data, is available at https://lynnlab.shinyapps.io/Human_Islet_Atlas/ . The raw data files are available at NCBI Gene Expression Omnibus (GSE196715).


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Calcio/metabolismo , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo
16.
Diabetologia ; 65(5): 811-828, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35243521

RESUMEN

AIMS/HYPOTHESIS: While pancreatic beta cells have been shown to originate from endocrine progenitors in ductal regions, it remains unclear precisely where beta cells emerge from and which transcripts define newborn beta cells. We therefore investigated characteristics of newborn beta cells extracted by a time-resolved reporter system. METHODS: We established a mouse model, 'Ins1-GFP; Timer', which provides spatial information during beta cell neogenesis with high temporal resolution. Single-cell RNA-sequencing (scRNA-seq) was performed on mouse beta cells sorted by fluorescent reporter to uncover transcriptomic profiles of newborn beta cells. scRNA-seq of human embryonic stem cell (hESC)-derived beta-like cells was also performed to compare newborn beta cell features between mouse and human. RESULTS: Fluorescence imaging of Ins1-GFP; Timer mouse pancreas successfully dissected newly generated beta cells as green fluorescence-dominant cells. This reporter system revealed that, as expected, some newborn beta cells arise close to the ducts (ßduct); unexpectedly, the others arise away from the ducts and adjacent to blood vessels (ßvessel). Single-cell transcriptomic analyses demonstrated five distinct populations among newborn beta cells, confirming spatial heterogeneity of beta cell neogenesis such as high probability of glucagon-positive ßduct, musculoaponeurotic fibrosarcoma oncogene family B (MafB)-positive ßduct and musculoaponeurotic fibrosarcoma oncogene family A (MafA)-positive ßvessel cells. Comparative analysis with scRNA-seq data of mouse newborn beta cells and hESC-derived beta-like cells uncovered transcriptional similarity between mouse and human beta cell neogenesis including microsomal glutathione S-transferase 1 (MGST1)- and synaptotagmin 13 (SYT13)-highly-expressing state. CONCLUSIONS/INTERPRETATION: The combination of time-resolved histological imaging with single-cell transcriptional mapping demonstrated novel features of spatial and transcriptional heterogeneity in beta cell neogenesis, which will lead to a better understanding of beta cell differentiation for future cell therapy. DATA AVAILABILITY: Raw and processed single-cell RNA-sequencing data for this study has been deposited in the Gene Expression Omnibus under accession number GSE155742.


Asunto(s)
Fibrosarcoma , Células Secretoras de Insulina , Transcriptoma , Animales , Diferenciación Celular/genética , Fibrosarcoma/metabolismo , Glucagón/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Ratones , Conductos Pancreáticos , ARN
17.
Cell Mol Life Sci ; 78(23): 7107-7132, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34613423

RESUMEN

Over the past few years, extensive efforts have been made to generate in-vitro pancreatic micro-tissue, for disease modeling or cell replacement approaches in pancreatic related diseases such as diabetes mellitus. To obtain these goals, a closer look at the diverse cells participating in pancreatic development is necessary. Five major non-epithelial pancreatic (pN-Epi) cell populations namely, pancreatic endothelium, mesothelium, neural crests, pericytes, and stellate cells exist in pancreas throughout its development, and they are hypothesized to be endogenous inducers of the development. In this review, we discuss different pN-Epi cells migrating to and existing within the pancreas and their diverse effects on pancreatic epithelium during organ development mediated via associated signaling pathways, soluble factors or mechanical cell-cell interactions. In-vivo and in-vitro experiments, with a focus on N-Epi cells' impact on pancreas endocrine development, have also been considered. Pluripotent stem cell technology and multicellular three-dimensional organoids as new approaches to generate pancreatic micro-tissues have also been discussed. Main challenges for reaching a detailed understanding of the role of pN-Epi cells in pancreas development in utilizing for in-vitro recapitulation have been summarized. Finally, various novel and innovative large-scale bioengineering approaches which may help to recapitulate cell-cell interactions and are crucial for generation of large-scale in-vitro multicellular pancreatic micro-tissues, are discussed.


Asunto(s)
Comunicación Celular/fisiología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Diabetes Mellitus/terapia , Páncreas/crecimiento & desarrollo , Ingeniería de Tejidos/métodos , Diferenciación Celular/fisiología , Células Endoteliales/metabolismo , Endotelio/citología , Endotelio/metabolismo , Humanos , Organogénesis/fisiología , Organoides/citología , Páncreas/citología , Enfermedades Pancreáticas/terapia , Células Madre Pluripotentes/citología
19.
Mol Neurodegener ; 15(1): 21, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32178712

RESUMEN

BACKGROUND: Frontotemporal lobar degeneration (FTLD) is a devastating and progressive disorder, and a common cause of early onset dementia. Progranulin (PGRN) haploinsufficiency due to autosomal dominant mutations in the progranulin gene (GRN) is an important cause of FTLD (FTLD-GRN), and nearly a quarter of these genetic cases are due to a nonsense mutation. Premature termination codons (PTC) can be therapeutically targeted by compounds allowing readthrough, and aminoglycoside antibiotics are known to be potent PTC readthrough drugs. Restoring endogenous PGRN through PTC readthrough has not previously been explored as a therapeutic intervention in FTLD. METHODS: We studied whether the aminoglycoside G418 could increase PGRN expression in HEK293 and human induced pluripotent stem cell (hiPSC)-derived neurons bearing the heterozygous S116X, R418X, and R493X pathogenic GRN nonsense mutations. We further tested a novel substituted phthalimide PTC readthrough enhancer in combination with G418 in our cellular models. We next generated a homozygous R493X knock-in hiPSC isogenic line (R493X-/- KI), assessing whether combination treatment in hiPSC-derived neurons and astrocytes could increase PGRN and ameliorate lysosomal dysfunction relevant to FTLD-GRN. To provide in vivo proof-of-concept of our approach, we measured brain PGRN after intracerebroventricular administration of G418 in mice expressing the V5-tagged GRN nonsense mutation R493X. RESULTS: The R418X and R493X mutant GRN cell lines responded to PTC readthrough with G418, and treatments increased PGRN levels in R493X-/- KI hiPSC-derived neurons and astrocytes. Combining G418 with a PTC readthrough enhancer increased PGRN levels over G418 treatment alone in vitro. PGRN deficiency has been shown to impair lysosomal function, and the mature form of the lysosomal protease cathepsin D is overexpressed in R493X-/- KI neurons. Increasing PGRN through G418-mediated PTC readthrough normalized this abnormal lysosomal phenotype in R493X-/- KI neuronal cultures. A single intracerebroventricular injection of G418 induced GRN PTC readthrough in 6-week-old AAV-GRN-R493X-V5 mice. CONCLUSIONS: Taken together, our findings suggest that PTC readthrough may be a potential therapeutic strategy for FTLD caused by GRN nonsense mutations.


Asunto(s)
Degeneración Lobar Frontotemporal/genética , Expresión Génica/efectos de los fármacos , Gentamicinas/farmacología , Lisosomas/efectos de los fármacos , Progranulinas/genética , Animales , Células Cultivadas , Codón sin Sentido , Codón de Terminación , Células HEK293 , Humanos , Lisosomas/metabolismo , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Progranulinas/biosíntesis , Regulación hacia Arriba
20.
Nat Commun ; 11(1): 467, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980626

RESUMEN

The glucagon-like peptide-1 receptor (GLP1R) is a class B G protein-coupled receptor (GPCR) involved in metabolism. Presently, its visualization is limited to genetic manipulation, antibody detection or the use of probes that stimulate receptor activation. Herein, we present LUXendin645, a far-red fluorescent GLP1R antagonistic peptide label. LUXendin645 produces intense and specific membrane labeling throughout live and fixed tissue. GLP1R signaling can additionally be evoked when the receptor is allosterically modulated in the presence of LUXendin645. Using LUXendin645 and LUXendin651, we describe islet, brain and hESC-derived ß-like cell GLP1R expression patterns, reveal higher-order GLP1R organization including membrane nanodomains, and track single receptor subpopulations. We furthermore show that the LUXendin backbone can be optimized for intravital two-photon imaging by installing a red fluorophore. Thus, our super-resolution compatible labeling probes allow visualization of endogenous GLP1R, and provide insight into class B GPCR distribution and dynamics both in vitro and in vivo.


Asunto(s)
Colorantes Fluorescentes , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Línea Celular , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Receptor del Péptido 1 Similar al Glucagón/antagonistas & inhibidores , Receptor del Péptido 1 Similar al Glucagón/deficiencia , Receptor del Péptido 1 Similar al Glucagón/genética , Células HEK293 , Células Madre Embrionarias Humanas/metabolismo , Humanos , Islotes Pancreáticos/metabolismo , Ratones , Ratones Noqueados , Modelos Moleculares , Estructura Molecular , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Transducción de Señal , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...