Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Dis ; 108(9): 2771-2777, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38720542

RESUMEN

A real-time loop-mediated isothermal amplification (LAMP) assay for the detection of Bremia lactucae, the causal pathogen of lettuce downy mildew, was developed and validated to aid in-field detection of airborne inoculum. Assay specificity was confirmed against a range of other pathogenic oomycete and fungal spp., and sensitivity of the assay for the detection of DNA extracted from sporangia was evaluated. The B. lactucae LAMP assay reliably detected DNA equivalent to 1 spore/reaction (16.7 pg DNA/reaction). Following extraction of DNA from Rotorod air samplers, to which sporangial suspensions were added, the assay reliably detected 25 sporangia/Rotorod. Detection of airborne inoculum of B. lactucae collected through the season from air samplers deployed in-field in plots infected with B. lactucae and in commercial lettuce fields in Scotland over two growing seasons was assessed. The method can be deployed on samples collected from commercial lettuce production to inform disease management strategies and limit the use of unnecessary prophylactic pesticide applications.


Asunto(s)
Lactuca , Técnicas de Amplificación de Ácido Nucleico , Oomicetos , Enfermedades de las Plantas , Técnicas de Amplificación de Ácido Nucleico/métodos , Lactuca/microbiología , Enfermedades de las Plantas/microbiología , Oomicetos/genética , Oomicetos/aislamiento & purificación , Sensibilidad y Especificidad , Técnicas de Diagnóstico Molecular/métodos
2.
Front Plant Sci ; 7: 672, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27303410

RESUMEN

The greatest threat to potato production world-wide is late blight, caused by the oomycete pathogen Phytophthora infestans. A screen of 126 wild diploid Solanum accessions from the Commonwealth Potato Collection (CPC) with P. infestans isolates belonging to the genotype 13-A2 identified resistances in the species S. bulbocastanum, S. capsicibaccatum, S. microdontum, S. mochiquense, S. okadae, S. pinnatisectum, S. polyadenium, S. tarijense, and S. verrucosum. Effector-omics, allele mining, and diagnostic RenSeq (dRenSeq) were utilized to investigate the nature of resistances in S. okadae accessions. dRenSeq in resistant S. okadae accessions 7129, 7625, 3762, and a bulk of 20 resistant progeny confirmed the presence of full-length Rpi-vnt1.1 under stringent mapping conditions and corroborated allele mining results in the accessions 7129 and 7625 as well as Avr-vnt1 recognition in transient expression assays. In contrast, susceptible S. okadae accession 3761 and a bulk of 20 susceptible progeny lacked sequence homology in the 5' end compared to the functional Rpi-vnt1.1 gene. Further evaluation of S. okadae accessions with P. infestans isolates that have a broad spectrum of virulence demonstrated that, although S. okadae accessions 7129, 7625, and 7629 contain functional Rpi-vnt1.1, they also carry a novel resistance gene. We provide evidence that existing germplasm collections are important sources of novel resistances and that "omic" technologies such as dRenSeq-based genomics and effector-omics are efficacious tools to rapidly explore the diversity within these collections.

3.
Glob Chang Biol ; 22(11): 3724-3738, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27214030

RESUMEN

The impact of climate change on dispersal processes is largely ignored in risk assessments for crop diseases, as inoculum is generally assumed to be ubiquitous and nonlimiting. We suggest that consideration of the impact of climate change on the connectivity of crops for inoculum transmission may provide additional explanatory and predictive power in disease risk assessments, leading to improved recommendations for agricultural adaptation to climate change. In this study, a crop-growth model was combined with aerobiological models and a newly developed infection risk model to provide a framework for quantifying the impact of future climates on the risk of disease occurrence and spread. The integrated model uses standard meteorological variables and can be easily adapted to various crop pathosystems characterized by airborne inoculum. In a case study, the framework was used with data defining the spatial distribution of potato crops in Scotland and spatially coherent, probabilistic climate change data to project the future connectivity of crop distributions for Phytophthora infestans (causal agent of potato late blight) inoculum and the subsequent risk of infection. Projections and control recommendations are provided for multiple combinations of potato cultivar and CO2 emissions scenario, and temporal and spatial averaging schemes. Overall, we found that relative to current climatic conditions, the risk of late blight will increase in Scotland during the first half of the potato growing season and decrease during the second half. To guide adaptation strategies, we also investigated the potential impact of climate change-driven shifts in the cropping season. Advancing the start of the potato growing season by 1 month proved to be an effective strategy from both an agronomic and late blight management perspective.


Asunto(s)
Cambio Climático , Phytophthora infestans , Solanum tuberosum , Dióxido de Carbono , Productos Agrícolas , Enfermedades de las Plantas , Riesgo , Escocia , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...