RESUMEN
BACKGROUND: Gastric adenocarcinoma is associated with chronic infection by Helicobacter pylori and with the host inflammatory response triggered by it, with substantial inter-person variation in the immune response profile due to host genetic factors. AIM: To investigate the diversity of the proinflammatory genes IL8, its receptors and PTGS2 in Amerindians; to test whether candidate SNPs in these genes are associated with gastric cancer in an admixed population with high Amerindian ancestry from Lima, Peru; and to assess whether an IL8RB promoter-derived haplotype affects gene expression. METHODS: We performed a Sanger-resequencing population survey, a candidate-gene association study (220 cases, 288 controls) and meta-analyses. We also performed an in vitro validation by a reporter gene assay of IL8RB promoter. RESULTS: The diversity of the promoter of studied genes in Native Americans is similar to Europeans. Although an association between candidate SNPs and gastric cancer was not found in Peruvians, trend in our data is consistent with meta-analyses results that suggest PTGS2-rs689466-A is associated with H. pylori-associated gastric cancer in East Asia. IL8RB promoter-derived haplotype (rs3890158-A/rs4674258-T), common in Peruvians, was up-regulated by TNF-α unlike the ancestral haplotype (rs3890158-G/rs4674258-C). Bioinformatics analysis suggests that this effect stemmed from creation of a binding site for the FOXO3 transcription factor by rs3890158G>A. CONCLUSIONS: Our updated meta-analysis reinforces the role of PTGS2-rs689466-A in gastric cancer in Asians, although more studies that control for ancestry are necessary to clarify its role in Latin Americans. Finally, we suggest that IL8RB-rs3890158G>A is a cis-regulatory SNP.
Asunto(s)
Adenocarcinoma/etnología , Adenocarcinoma/genética , Biomarcadores de Tumor/genética , Ciclooxigenasa 2/genética , Indígenas Sudamericanos/genética , Interleucina-8/genética , Polimorfismo de Nucleótido Simple , Neoplasias Gástricas/etnología , Neoplasias Gástricas/genética , Adenocarcinoma/metabolismo , Pueblo Asiatico/genética , Sitios de Unión , Población Negra/genética , Estudios de Casos y Controles , Biología Computacional , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación Neoplásica de la Expresión Génica , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Células HEK293 , Haplotipos , Humanos , Perú/epidemiología , Fenotipo , Regiones Promotoras Genéticas , Factores de Riesgo , Neoplasias Gástricas/metabolismo , Transfección , Población Blanca/genéticaRESUMEN
The phagocyte NADPH oxidase catalyzes the reduction of O2 to reactive oxygen species with microbicidal activity. It is composed of two membrane-spanning subunits, gp91-phox and p22-phox (encoded by CYBB and CYBA, respectively), and three cytoplasmic subunits, p40-phox, p47-phox, and p67-phox (encoded by NCF4, NCF1, and NCF2, respectively). Mutations in any of these genes can result in chronic granulomatous disease, a primary immunodeficiency characterized by recurrent infections. Using evolutionary mapping, we determined that episodes of adaptive natural selection have shaped the extracellular portion of gp91-phox during the evolution of mammals, which suggests that this region may have a function in host-pathogen interactions. On the basis of a resequencing analysis of approximately 35 kb of CYBB, CYBA, NCF2, and NCF4 in 102 ethnically diverse individuals (24 of African ancestry, 31 of European ancestry, 24 of Asian/Oceanians, and 23 US Hispanics), we show that the pattern of CYBA diversity is compatible with balancing natural selection, perhaps mediated by catalase-positive pathogens. NCF2 in Asian populations shows a pattern of diversity characterized by a differentiated haplotype structure. Our study provides insight into the role of pathogen-driven natural selection in an innate immune pathway and sheds light on the role of CYBA in endothelial, nonphagocytic NADPH oxidases, which are relevant in the pathogenesis of cardiovascular and other complex diseases.